High Temperature

, Volume 56, Issue 5, pp 702–710 | Cite as

Flow in a High-Velocity Mixed Compression Inlet Studied by the RANS/ILES Method in Different Operation Modes

  • D. A. LyubimovEmail author
  • A. O. ChestnykhEmail author


The separated flows taking place in different-geometry diffusers and in a high velocity inlet have been studied by the Reynolds Averaged Navier-Stokes–Implicit Large Eddy Simulation (RANS/ILES) method. The presented modified method makes it possible to increase the computation accuracy of separated areas and attached boundary layers. The flows in a model inlet of mixed compression with a rectangle cross section are calculated for incoming flow Mach number of 5.9 on a grid with 4.13 × 106 cells, beginning with a mode without throttling and finishing with buzz mode. The boundary where the inlet becomes unstable, if throttling is increased, is determined. The relationship of the pressure on time at the upper wall of the inlet isolator channel for all modes, including the buzz mode, is compared with the experimental one. The correlation between inlet throttling and buzz frequency is revealed. The performance curve is determined. The experimental and calculated results are in good agreement for all available experimental parameters for the examined inlet. The presented method demonstrates higher accuracy with respect to the calculations performed by the LES method on the fine grid of the examined inlet.



This work was partially supported by the Russian Foundation for Basic Research, project no. 15-08-01996-A.

The authors thank M.Kh. Strelets for useful recommendations, and V.A. Stepanov and V.A. Vinogradov for their fruitful discussion.


  1. 1.
    Tan, H.-J., Sun, S., and Yin, Z.-L., J. Propul. Power, 2009, vol. 25, no. 1, p. 138.CrossRefGoogle Scholar
  2. 2.
    Li, Z., Gao, W., Jiang, H., and Yang, J., AIAA J., 2013, vol. 51, no. 10, p. 2485.ADSCrossRefGoogle Scholar
  3. 3.
    Peterson, D.M., Candler, G.V., and Drayna, T.W., Detached eddy simulation of a generic scramjet inlet and combustor, AIAA Pap. 2009-130, 2009.Google Scholar
  4. 4.
    You, Y., Luedeke, H., and Hannemann, K., Proc. Combust. Inst., 2013, vol. 34, p. 2083.CrossRefGoogle Scholar
  5. 5.
    Trapier, S., Deck, S., and Duveau, P., AIAA J., 2008, vol. 46, no. 1, p. 118.ADSCrossRefGoogle Scholar
  6. 6.
    Peterson, D.M., Boyce, R.R., and Wheatley, V., AIAA J., 2013, vol. 51, no. 12, p. 2823.ADSCrossRefGoogle Scholar
  7. 7.
    Shur, M.L., Spalart, P.R., Strelets, M.K., and Travin, A.K., Int. J. Heat Fluid Flow, 2008, vol. 29, p. 1638.CrossRefGoogle Scholar
  8. 8.
    Boles, J.A., Choi, J.-I., Edwards, J.R., and Baurle, R.A., Simulations of high-speed internal flows using LES/RANS models, AIAA Pap. 2009-1324, 2009.Google Scholar
  9. 9.
    Lyubimov, D.A. and Potekhina, I.V., High Temp., 2016, vol. 54, no. 5, p. 784.CrossRefGoogle Scholar
  10. 10.
    Lyubimov, D.A., in. Mater. XI Vseros. s”ezda po fundamental’nym problemam teoreticheskoi i prikladnoi mekhaniki (Proc. XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics), Kazan, 2015, p. 2399.Google Scholar
  11. 11.
    Spalart, P.R., Jou, W.-H., Strelets, M., and Allmaras, S.R., in Proc. 1st AFOSR Int. Conf. on DNS/LES, Rouston, LA, 1997, p. 669.Google Scholar
  12. 12.
    Yan, J., Tawackolian, K., Michel, U., and Thiele, F., Computation of jet noise using a hybrid approach, AIAA Pap. 2007-3621, 2007.Google Scholar
  13. 13.
    Islam, A. and Thornber, B., in Proc. 19th Australasian Fluid Mechanics Conf., Melbourne, 2014.Google Scholar
  14. 14.
    Wei, Q., Chen, H.-X., and Ma, Z., J. Hydrodyn., 2016, vol. 28, no. 5, p. 811.ADSCrossRefGoogle Scholar
  15. 15.
    Nakamori, I. and Ikohagi, T., Comput. Fluids, 2008, vol. 37, p. 161.CrossRefGoogle Scholar
  16. 16.
    Morgan, P.E. and Visbal, M.R., Application of hybrid RANS/ILES to geometries with separated flows, AIAA Pap. 2006-3028, 2006.Google Scholar
  17. 17.
    Zhu, H., Fu, S., Lei, ShiL., and Wang, Z.J., A hybrid rans-implicit les approach for the high-order FR/CPR method, AIAA Pap. 2016-1599, 2016.Google Scholar
  18. 18.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., and Travin, A., Theor. Comput. Fluid Dyn., 2006, vol. 20, p. 181.CrossRefGoogle Scholar
  19. 19.
    Lyubimov, D.A., High Temp., 2008, vol. 46, no. 2, p. 243.CrossRefGoogle Scholar
  20. 20.
    Lyubimov, D.A., High Temp., 2012, vol. 50, no. 3, p. 420.CrossRefGoogle Scholar
  21. 21.
    Suresh, A. and Huynh, H.T., J. Comput. Phys., 1997, vol. 136, no. 1, p. 83.ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Spalart, P.R. and Allmaras, S.R., Rech. Aerospat., 1994, no. 1, p. 5.Google Scholar
  23. 23.
    Vogel, J.C. and Eaton, J.K., J. Heat Transfer, 1985, vol. 107, p. 922.CrossRefGoogle Scholar
  24. 24.
    Stepanov, V.A., Makarov, A.Yu., and Maslov, V.P., in Proc. 29th Int. Congress of the Aeronautical Science, St.-Petersburg, 2014, Paper no. 280.Google Scholar
  25. 25.
    Lyubimov, D.A. and Potekhina, I.V., Fluid Dyn., 2015, vol. 50, no. 4, p. 590.CrossRefGoogle Scholar
  26. 26.
    Lyubimov, D., Makarov, A., and Potekhina, I., in Proc. 28th Int. Congress of the Aeronautical Science, Brisbane, 2012.Google Scholar
  27. 27.
    Sun, P.Z., Shi, H.T., and Lu, X.Y., Proc. Eng., 2015, vol. 126, p. 179.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations