Advertisement

High Temperature

, Volume 56, Issue 3, pp 462–465 | Cite as

Analysis of the Specific Heat of Ru Doped LiKSO4 Close to Phase Transitions

  • H. YurtsevenEmail author
  • D. V. Tirpanci
  • H. Karacali
Short Communications

Abstract

The temperature dependence of the specific heat, Cp, is analyzed for different percentages of ruthenium (Ru) content in LiKSO4 using a power-law formula deduced from Ising model. For this analysis, data observed are taken from the literature and the values of the critical exponent for Cp are extracted in the vicinity of the transition temperature (Tc = 708 K) within the incommensurate phase of Ru doped LiKSO4. Obtained values of the critical exponent of Cp confirm in most cases above and below Cp the critical exponent value predicted by the 3D Ising model for the doped LiKSO4. On this basis, the specific heat, Cp, of some other molecular crystals can also be analyzed using the same power-law formula as studied here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley, A., Philos. Mag., Ser. 6, 1925, vol. 49, no. 294, p. 1225.CrossRefGoogle Scholar
  2. 2.
    Pimenta, M.A., Echegut, P., Luspin, Y., Hauret, G., Gervais, F., and Abelard, P., Phys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 39, p. 3361.CrossRefADSGoogle Scholar
  3. 3.
    Moreira, R.L., Boursen, P., Leitae, U.A., Righi, A., Belo, L.C.M., and Pimenta, M.A., Phys. Rev. B: Condens. Matter Mater. Phys., 1985, vol. 52, p. 12591.CrossRefADSGoogle Scholar
  4. 4.
    Bansal, M.I. and Roy, A.P., Phys. Rev. B: Condens. Matter Mater. Phys., 1984, vol. 30, p. 7303.CrossRefADSGoogle Scholar
  5. 5.
    Zhang, M., Salje, E.K.H., and Putnis, A., J. Phys.: Condens. Matter, 1998, vol. 10, p. 11811.ADSGoogle Scholar
  6. 6.
    Chack, R., Tomaszewski, P.E., and Bornavel, J., J. Phys. C: Solid State Phys., 1985, vol. 18, p. 915.CrossRefADSGoogle Scholar
  7. 7.
    Mroz, B., Tuszynski, J.A., Kiefte, H., and Clouter, M.J., J. Phys.: Condens. Matter, 1989, vol. 1, p. 5965.ADSGoogle Scholar
  8. 8.
    Choudhury, N., Chaplot, S.I., and Rao, K.R., Phys. Rev. B: Condens. Matter Mater. Phys., 1986, vol. 33, p. 8607.CrossRefADSGoogle Scholar
  9. 9.
    Kabelka, H. and Kuchler, G., Ferroelectrics, 1988, vol. 88, p. 93.CrossRefGoogle Scholar
  10. 10.
    Prasad, T.R., Venudhar, Y.C., Iyenger, L., and Rao, K.V.K., Pramana, 1978, vol. 11, p. 81.CrossRefADSGoogle Scholar
  11. 11.
    Sharma, D.P., Pramana, 1979, vol. 13, p. 223.CrossRefADSGoogle Scholar
  12. 12.
    Abello, L., Chhar, K., and Pommier, C., J. Chem. Thermdyn., 1985, vol. 17, p. 1023.CrossRefGoogle Scholar
  13. 13.
    Kassem, M.E., Mamoud, S.A., and Hamed, A., J. Therm. Anal., 1994, vol. 42, p. 1241.CrossRefGoogle Scholar
  14. 14.
    Kassem, M.E., Gaafar, M., Gawad, M.M.H.A., El-Muraikhi, M., and Ragabo, I.M., Radiat. Phys. Chem., 2004, vol. 69, no. 2, p. 103.CrossRefADSGoogle Scholar
  15. 15.
    Diosa, J.E., Montero, G.G., and Vargas, R.A., Phys. Status Solidi B, 2000, vol. 220, p. 647.CrossRefADSGoogle Scholar
  16. 16.
    Kassem, M.E., Ahmed, M.A., El-Hiti, M.A., and El-Nimr, M.K., J. Mater. Sci. Lett., 1992, vol. 11, p. 1109.CrossRefGoogle Scholar
  17. 17.
    Kassem, M.E., Mater. Lett., 1992, vol. 15, p. 162.CrossRefGoogle Scholar
  18. 18.
    Ventura, D.R., Speziali, N.L., and Pimenta, P.A., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 11869.CrossRefADSGoogle Scholar
  19. 19.
    Scherf, C., Hahn, T., and Klapper, G., Ferroelectrics, 1997, vol. 191, p. 379.CrossRefGoogle Scholar
  20. 20.
    Pinheiro, C.B., Vimenta, M.A., Chapuis, G., and Speziali, N.L., Acta Crystallogr., Sect. B: Struct. Sci., 2000, vol. 56, p. 607.CrossRefGoogle Scholar
  21. 21.
    Oliveira, A.J., Germano, F.A., Mendes, J., Melo, E.E., and Moreira, J.E., Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 38, p. 12633.CrossRefADSGoogle Scholar
  22. 22.
    Liu, H.K., Hu, M.L., Tse, W.S., Wong, D.P., and Lin, S.J., Chin. J. Phys., 1998, vol. 36, p. 542.Google Scholar
  23. 23.
    Yurtseven, H. and Kurt, M., Mod. Phys. Lett. B, 2016, vol. 30, 1650016.CrossRefADSGoogle Scholar
  24. 24.
    Righi, A., Bourson, P., Ayala, A.P., Moreira, R.L., Galez, P., and Soubeyroux, J.L., Solid State Commun., 1998, vol. 107, p. 196.CrossRefADSGoogle Scholar
  25. 25.
    Yurtseven, H. and Sen, S., Jpn. J. Appl. Phys., 2008, vol. 47, p. 2217.CrossRefADSGoogle Scholar
  26. 26.
    Drozdowski, M. and Holmj, F., Ferroelectrics, 1998, vol. 77, p. 47.CrossRefGoogle Scholar
  27. 27.
    Yurtseven, H. and Yanik, A., J. Phase Equilib., 2002, vol. 23, p. 502.CrossRefGoogle Scholar
  28. 28.
    Pippard, A.B., Elements of Classical Thermodynamics, New York: Cambridge Univ. Press, 1957.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of PhysicsAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations