Advertisement

High Temperature

, Volume 56, Issue 3, pp 433–438 | Cite as

Effect of Heat Transfer on the First and Second Law Efficiency Analysis and Optimization of an Air-standard Atkinson Cycle

  • A. HajipourEmail author
  • M. M. Rashidi
  • M. E. Ali
  • N. Freidoonimehr
  • M. Fallahian
Heat and Mass Transfer and Physical Gasdynamics

Abstract

In this paper, the first and second-law analysis for the thermodynamic air-standard Atkinson cycle with an account for heat transfer is performed using finite-time thermodynamics. In order to have more accurate evaluations, the effects of thermodynamic and design key parameters on the performance characteristics of Atkinson cycle are shown. Further, artificial neural network and imperialist competition algorithm are employed to predict and optimize the net work output value versus the minimum cycle temperature and also the compression ratio. The results obtained show that the heat loss is an effective factor of the performance of the cycle and it should be considered in the analysis and comparison of practical internal combustion engines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heywood, J.B., Internal Combustion Engine Fundamentals, New York: McGraw-Hill, 1997.Google Scholar
  2. 2.
    Borgnakke, C. and Sonntag, R.E., Fundamental of Thermodynamics, New York: Wiley, 2009, 7th ed.Google Scholar
  3. 3.
    Cengel, Y.A. and Boles, M.A., Thermodynamics: An Engineering Approach, New York: McGraw-Hill, 2010, 7th ed.Google Scholar
  4. 4.
    Bejan, A., Advanced Engineering Thermodynamics, Hoboken, NJ: Wiley, 2006.Google Scholar
  5. 5.
    Zhao, Y. and Chen, J., Appl. Energy, 2006, vol. 83, p. 789.CrossRefGoogle Scholar
  6. 6.
    Ge, Y., Chen, L.Sun., and Wu, C., Appl. Energy, vol. 83, p. 1210.Google Scholar
  7. 7.
    Ge, Y., Chen, L.Sun., and Wu, C., Appl. Energy, 2005, vol. 81, p. 397.CrossRefGoogle Scholar
  8. 8.
    Chen, L., Zhang, W., and Sun, F., Appl. Energy, 2007, vol. 84, p. 512.CrossRefGoogle Scholar
  9. 9.
    Hou, S.S., Energy Convers. Manage., 2007, vol. 48, p. 1683.CrossRefGoogle Scholar
  10. 10.
    Parlak, A., Energy Convers. Manage., 2005, vol. 46, p. 351.CrossRefGoogle Scholar
  11. 11.
    Rakopoulos, C.D. and Giakoumis, E.G., Prog. Energy Combust. Sci., 2006, vol. 32, p. 2.CrossRefGoogle Scholar
  12. 12.
    Lior, N. and Zhang, N., Energy, 2007, vol. 32, p. 281.CrossRefGoogle Scholar
  13. 13.
    Som, S.K. and Datta, A., Prog. Energy Combust. Sci., 2008, vol. 34, p. 351.CrossRefGoogle Scholar
  14. 14.
    Lior, N. and Rudy, G.J., Energy Convers. Manage., 1988, vol. 28, p. 327.CrossRefGoogle Scholar
  15. 15.
    Rashidi, M.M., Anwar Bég, O., and Habibzadeh, A., Int. J. Energy Res., 2012, vol. 36, p. 231.CrossRefGoogle Scholar
  16. 16.
    Rashidi, M.M., Hajipour, A., and Fahimirad, A., Int. J. Mechatronics, Electr. Comput. Technol., 2014, vol. 4, p. 315.Google Scholar
  17. 17.
    Rashidi, M.M., Mousapour, A., and Hajipour, A., Heat Mass Transfer, 2014, vol. 50, p. 1177.ADSCrossRefGoogle Scholar
  18. 18.
    Rashidi, M.M., Hajipour, A., Mousapour, A., Ali, M., Xie, G., and Freidoonimehr, N., Adv. Mech. Eng., 2014, vol. 6. https://doi.org/10.1155/2014/359872
  19. 19.
    Hajipour, A., Rashidi, M.M., Ali, M., Yang, Z., and Anwar Bég, O., Arabian J. Sci. Eng., 2015, vol. 41, p. 1635.CrossRefGoogle Scholar
  20. 20.
    Ge, Y., Chen, L., and Sun, F., Appl. Energy, 2008, vol. 85, p. 618.CrossRefGoogle Scholar
  21. 21.
    Ge, Y., Chen, L., and Sun, F., Math. Comput. Modell., 2009, vol. 50, p. 101.CrossRefGoogle Scholar
  22. 22.
    Hou, S.S. and Lin, J.C., Acta Phys. Pol., A, 2011, vol. 120, p. 979.CrossRefGoogle Scholar
  23. 23.
    Rashidi, M.M., Galanis, N., Nazari, F., Basiri Parsa, A., and Shamekhi, L., Energy, 2011, vol. 36, p. 5728.CrossRefGoogle Scholar
  24. 24.
    Mousapour, A., Hajipour, A., Rashidi, M.M., and Freidoonimehr, N., Energy, 2016, vol. 94, p. 100.CrossRefGoogle Scholar
  25. 25.
    Habibzadeh, A., Rashidi, M.M., and Galanis, N., Energy Convers. Manage., 2013, vol. 65, p. 381.CrossRefGoogle Scholar
  26. 26.
    Atashpaz-Gargari, E. and Lucas, C., Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, in Proc. 2007 IEEE Congress on Evolutionary Computation (CEC), Singapore, 2007, p. 4661.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Hajipour
    • 1
    Email author
  • M. M. Rashidi
    • 2
  • M. E. Ali
    • 3
  • N. Freidoonimehr
    • 4
  • M. Fallahian
    • 4
  1. 1.Young Researchers and Elite Club, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
  2. 2.School of Civil EngineeringUniversity of BirminghamBirminghamUK
  3. 3.Mechanical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Young Researchers and Elite Club, Hamedan BranchIslamic Azad UniversityHamedanIran

Personalised recommendations