Advertisement

High Temperature

, Volume 56, Issue 3, pp 454–457 | Cite as

Acoustically Induced Formation of Helical Structures in a Swirling Argon Flow in the Presence of Pulse Repetitive Capacity HF Discharge

  • I. P. ZavershinskiiEmail author
  • A. I. Klimov
  • N. E. Molevich
  • S. S. Sugak
Short Communications
  • 12 Downloads

Abstract

A numerical study is made of the structure of a swirling argon flow with atmospheric pressure in a closed tube duct with an asymmetric gas outlet, a localized heat source simulating gas heating by a longitudinal pulse repetitive HF discharge, and the source of an acoustic field simulating sound generation by discharge pulses. It is shown that, at supercritical amplitudes of the acoustic field, helical gas-dynamic and thermal flows capable of inducing the formation of a discharge channel with a structure that is close to the shape of a helical flow can form. The results are shown to qualitatively agree with the known experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Starikovskiy, A. and Aleksandrov, N., Nonequilibrium plasma aerodynamics, in Aeronautics and Astronautics, Mudler, M., Ed., Shanghai: InTech, 2011, p. 55.Google Scholar
  2. 2.
    Anderson, K. and Knight, D., AIAA J., 2012, vol. 50, p. 1855.ADSCrossRefGoogle Scholar
  3. 3.
    Bityurin, V.A., Efimov, A.V., Kazanskii, P.N., Klimov, A.I., and Moralev, I.A., High Temp., 2014, vol. 52, no. 4, p. 483.CrossRefGoogle Scholar
  4. 4.
    Bityurin, V.A., Grigorenko, A.V., Efimov, A.V., Klimov, A.I., Korshunov, O.V., Kutuzov, D.S., and Chinnov, V.F., High Temp., 2014, vol. 52, no. 1, p. 1.CrossRefGoogle Scholar
  5. 5.
    Jasinski, M., Dors, M., Nowakowska, H., and Mizeraczyk, J., Chem. Listy, 2008, vol. 102, p. 1332.Google Scholar
  6. 6.
    Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2015, vol. 53, no. 1, p. 21.CrossRefGoogle Scholar
  7. 7.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Intellekt, 2009.Google Scholar
  8. 8.
    Zavershinskii, I.P., Klimov, A.I., Makaryan, V.G., Molevich, N.E., Moralev, I.A., and Porfir’ev, D.P., Tech. Phys. Lett., 2011, vol. 37, no. 12, p. 1120.CrossRefGoogle Scholar
  9. 9.
    Zavershinskii, I.P. and Kogan, E.Ya., Plasma Phys. Rep., 1996, vol. 22, no. 3, p. 259.ADSGoogle Scholar
  10. 10.
    Galechyan, G.A., Phys.—Usp., 1995, vol. 38, no. 12, p. 1309.ADSCrossRefGoogle Scholar
  11. 11.
    Klimov, A.I., Melnichenko, D.M., Sukovatkin, N.N., Tolkunov, B.N., and Moralev, I.A., Longitudinal plasmoid in high-speed vortex gas flow created by capacity HF discharge, Quarterly Tech. Rep. ISTC Project, 2010, no. 3794P, part 10, p. 1.Google Scholar
  12. 12.
    Isakovich, M.A., Obshchaya akustika (General Acoustics), Moscow: Nauka, 1973.Google Scholar
  13. 13.
    Hasimoto, H., J. Fluid Mech., 1972, vol. 51, p. 477.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Alekseenko, S.V., Kuibin, P.A., and Okulov, V.L., Vvedenie v teoriyu kontsentrirovannykh vikhrei (Introduction to the Theory of Concentrated Vortices), Novosibirsk: Inst. Teplofiz., Sib. Otd. Ross. Akad. Nauk, 2003.zbMATHGoogle Scholar
  15. 15.
    Hopfinger, E.J., Browand, F.K., and Gagne, D., J. Fluid Mech., 1982, vol. 125, p. 505.ADSCrossRefGoogle Scholar
  16. 16.
    Alekseenko, S.V., Kuibin, P.A., Shtork, S.I., Skripkin, S.G., and Tsoy, M.A., JETP Lett., 2016, vol. 103, no. 7, p. 455.ADSCrossRefGoogle Scholar
  17. 17.
    Zavershinskii, I.P., Krasnoukhov, V.S., Molevich, N.E., and Sugak, S.S., Komp’yut. Opt., 2015, vol. 39, no. 4, p. 480.ADSGoogle Scholar
  18. 18.
    Rusanov, V.D. and Fridman, A.A., Fizika khimicheski aktivnoi plazmy (Physics of Chemically Active Plasma), Moscow: Nauka, 1984.Google Scholar
  19. 19.
    Spalart, P.R., Int. J. Heat Fluid Flow, 2000, vol. 21, p. 252.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. P. Zavershinskii
    • 1
    Email author
  • A. I. Klimov
    • 1
    • 2
  • N. E. Molevich
    • 1
    • 3
  • S. S. Sugak
    • 1
  1. 1.Samara National Research UniversitySamaraRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesSamaraRussia

Personalised recommendations