Advertisement

High Temperature

, Volume 56, Issue 3, pp 398–403 | Cite as

Heat Transfer in Subsonic Flows of Dissociated Nitrogen: HF Plasmatron Experiment and Numerical Simulation

  • A. F. Kolesnikov
  • A. N. Gordeev
  • S. A. Vasil’evskii
Heat and Mass Transfer and Physical Gasdynamics
  • 9 Downloads

Abstract

Experiments on heat transfer in subsonic jets of dissociated nitrogen have been carried out on a IPG-4 induction plasmatron. The heat fluxes to copper, stainless steel, nickel, graphite, and quartz surfaces at the stagnation point of a water-cooled cylindrical flat-faced model 20 mm in diameter and dynamic pressures have been measured at a pressure of 50 hPa in the test chamber and a power of 35–65 kW of the HF generator. The experiments showed the influence of surface catalytic properties on the heat flux in relation to the nitrogen atom recombination. In the conditions of the experiments, a numerical simulation of nitrogen plasma flows in the discharge channel of plasmatron and the subsonic dissociated nitrogen jet flow around the cylindrical model has been carried out. The experimental and calculated data on heat fluxes to cooled copper, stainless steel, nickel, graphite, and quartz surfaces are compared. The quantitative catalyticity scale of the studied materials in relation to the heterogeneous recombination of nitrogen atoms is established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasil’evskii, S.A., Kolesnikov, A.F., and Yakushin, M.I., Teplofiz. Vys. Temp., 1991, vol. 29, no. 3, p. 521.ADSGoogle Scholar
  2. 2.
    Vasil’evskii, S.A., Kolesnikov, A.F., and Yakushin, M.I., in Molecular Physics and Hypersonic Flows, Capitelli, M., Ed., NATO ASI Series, Kluwer, 1996, vol. 482, p. 495.CrossRefGoogle Scholar
  3. 3.
    Kolesnikov, A.F., Pershin, I.S., Vasil’evskii, S.A., and Yakushin, M.I., J. Spacecr. Rockets, 2000, vol. 37, no. 5, p. 573.ADSCrossRefGoogle Scholar
  4. 4.
    Kolesnikov, A.F., Gordeev, A.N., and Vasil’evskii, S.A., High Temp., 2016, vol. 54, no. 1, p. 29.CrossRefGoogle Scholar
  5. 5.
    Kolesnikov, A.F., Gordeev, A.N., Vasil’evskii, S.A., and Sakharov, V.I., Fiz. Khim. Kinet. Gas. Din., 2016, vol. 17, no. 2. http://chemphys.edu.ru/issues/2016-17-2/articles/637/.Google Scholar
  6. 6.
    Gordeev, A.N. and Kolesnikov, A.F., in Aktual’nye problemy mekhaniki. Fiziko-khimicheskaya mekhanika zhidkostei i gazov (Problems in Mechanics: Physicochemical Mechanics of Liquids and Gases), Moscow: Nauka, 2010, p. 151.Google Scholar
  7. 7.
    Vlasov, V.I., Zalogin, G.N., Zemlyanskii, B.A., and Knot’ko, V.B., Fluid Dyn., 2003, vol. 38, no. 5, p. 815.ADSCrossRefGoogle Scholar
  8. 8.
    Zhestkov, B.E. and Knivel’, A.Ya., Uch. Zap. Tsentr. Aerogidrodin. Inst., 1979, vol. 10, no. 6, p. 37.Google Scholar
  9. 9.
    Kolodziej, P. and Stewart, D.A., Nitrogen recombination on high-temperature reusable surface insulation and the analysis of its effect on surface catalysis, 1987, AIAA Pap. no. 87-1637.Google Scholar
  10. 10.
    Massuti-Ballester, B., Pidan, S., Herdrich, G., and Fertig, M., Adv. Space Res., 2015, vol. 56, no. 4, p. 742.ADSCrossRefGoogle Scholar
  11. 11.
    Kolesnikov, A.F., Fluid Dyn., 1993, vol. 28, no. 1, p. 131.ADSCrossRefGoogle Scholar
  12. 12.
    Kolesnikov, A.F., in Proc. 2nd Eur. Symp. on Aerothermodynamics for Space Vehicles, Noordwijk, Netherlands: ESA Publ. Division, 1995, p. 583.Google Scholar
  13. 13.
    Kolesnikov, A.F., High Temp., 2014, vol. 52, no. 1, p. 110.CrossRefGoogle Scholar
  14. 14.
    Surzhikov, S.T., High Temp., 2016, vol. 54, no. 2, p. 235.CrossRefGoogle Scholar
  15. 15.
    Vasil’evskii, S.A. and Kolesnikov, A.F., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), Moscow: Yanus-K, 2008, Ser. B, vol. 7-1, part 2, p. 220.Google Scholar
  16. 16.
    Patankar, S.V. and Spalding, D.B., Heat and Mass Transfer in Boundary Layers, London: Intertext Books, 1970.zbMATHGoogle Scholar
  17. 17.
    Voronkin, V.G. and Yakhlakov, Yu.V., Fluid Dyn., 1973, vol. 8, no. 3, p. 450.ADSCrossRefGoogle Scholar
  18. 18.
    Goulard, R., Jet Propul., 1958, vol. 28, no. 11, p. 737.CrossRefGoogle Scholar
  19. 19.
    Balat-Pichelin, M., Badie, J.M., Berjoan, R., and Boubert, P., Chem. Phys., 2003, vol. 291, p. 181.ADSCrossRefGoogle Scholar
  20. 20.
    Kholodkov, I.V., Kholodkova, N.V., and Smirnov, S.A., High Temp., 2016, vol. 54, no. 5, p. 639.CrossRefGoogle Scholar
  21. 21.
    Aleksandrov, E.N., Zhestkov, B.E., and Kozlov, S.N., High Temp., 2014, vol. 52, no. 1, p. 41.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. F. Kolesnikov
    • 1
  • A. N. Gordeev
    • 1
  • S. A. Vasil’evskii
    • 1
  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations