Advertisement

High Temperature

, Volume 56, Issue 3, pp 382–388 | Cite as

Solution of the Retrospective Inverse Heat Conduction Problem with Parametric Optimization

  • A. N. DiligenskayaEmail author
Heat and Mass Transfer and Physical Gasdynamics
  • 10 Downloads

Abstract

The retrospective inverse heat conduction problem has been solved as a problem of optimal control of an object with distributed parameters. The initial ill-posed statement of the inverse problem is transformed into a conditionally well-posed one when the limitations imposed on the second derivative of the desired control, which corresponds to a reduction of the set of control actions to the class of continuous and continuously differentiable functions, are taken into account. Preliminary parameterization of the control actions makes it possible to formulate a mathematical programming problem, which can be solved based on the analytical method of minimax optimization with alternance specific features of the desired optimal temperature deviations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alifanov, O.M., Obratnye zadachi teploobmena (Inverse Heat Transfer Problems), Moscow: Mashinostroenie, 1988.Google Scholar
  2. 2.
    Kabanikhin, S.I., Obratnye i nekorrektnye zadachi (Inverse and Ill-Posed Problems), Novosibirsk: Sibirsk. nauch. izd., 2009.Google Scholar
  3. 3.
    Alifanov, O.M., Artyukhin, E.A., and Rumyantsev, S.V., Ekstremal’nye metody resheniya nekorrektnykh zadach (Extreme Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1988.zbMATHGoogle Scholar
  4. 4.
    Denisov, A.M., Vvedenie v teoriyu obratnykh zadach (Introduction to the Theory of Inverse Problems), Moscow: Mosk. Gos. Univ., 1994.Google Scholar
  5. 5.
    Vatul’yan, A.O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela (Inverse Problems in the Mechanics of a Deformable Solid), Moscow: Fizmatlit, 2007.Google Scholar
  6. 6.
    Kozlov, I.A. and Chugunov, V.A., Vestn. Kazansk. Gos. Tekh. Univ. im. A.N. Tupoleva, 2012, no. 2, p. 138.Google Scholar
  7. 7.
    Zainullov, A.R., Vestn. Samarsk. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2015, vol. 19, no. 4, p. 667.CrossRefGoogle Scholar
  8. 8.
    Samarskii, A.A., Vabishchevich, P.N., and Vasil’ev, V.I., Mat. Model., 1997, vol. 9, no. 5, p. 119.MathSciNetGoogle Scholar
  9. 9.
    Eremeeva, M.S., Vestn. Sev. Vost. Fed. Univ., 2015, vol. 12, no. 1, p. 15.Google Scholar
  10. 10.
    Guseinov, Sh., Transp. Telecommun., 2004, vol. 5, no. 2.Google Scholar
  11. 11.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1979.zbMATHGoogle Scholar
  12. 12.
    Lattes, R. and Lions, J.-L., Methode de Quasi-Réversibilité et Applications, Paris: Dunod, 1967.zbMATHGoogle Scholar
  13. 13.
    Vabishchevich, P.N., Mat. Model., 1992, vol. 4, no. 5, p. 109.MathSciNetGoogle Scholar
  14. 14.
    Stolyarov, E.P., Teplofiz. Vys. Temp., 2005, vol. 43, no. 1, p. 71.Google Scholar
  15. 15.
    Kolodziej, J., Mierzwiczak, M., and Cialkowski, M., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 2, p. 121.CrossRefGoogle Scholar
  16. 16.
    Monde, M., Arima, H., Liu, W., Mitutake, Y., and Hammad, J.A., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 2135.CrossRefGoogle Scholar
  17. 17.
    Jonas, P. and Louis, A.K., Inverse Probl., 2000, vol. 16, p. 175.CrossRefADSGoogle Scholar
  18. 18.
    Anikonov, Yu.E., and Neshchadim, M.V., Vestn. Novosib. Gos. Univ., Ser. Mat., Mekh., Inf., 2011, vol. 11, no. 3, p. 20.Google Scholar
  19. 19.
    Butkovskii, A.G., Metody upravlenija sistemami s raspredelennymi parametrami (Methods for Managing Systems with Distributed Parameters), Moscow: Nauka, 1975.Google Scholar
  20. 20.
    Pleshivtceva, Yu.E. and Rapoport, E.Ya., Izv. Ross. Acad. Nauk, Teor. Syst. Upr., 2009, no. 3, p. 22.Google Scholar
  21. 21.
    Diligenskaya, Yu.E. and Rapoport, E.Ya., J. Eng. Phys. Therophys., 2014, vol. 87, no. 5, p. 1126.CrossRefGoogle Scholar
  22. 22.
    Rapoport, E.Ya., Al’ternansnyi metod v prikladnykh zadachakh optimizatsii (Alternance Method in Applied Optimization Problems), Moscow: Nauka, 2000.zbMATHGoogle Scholar
  23. 23.
    Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Theory of the Thermal Conductivity of Solids), Moscow: Vysshaya Shkola, 2001.Google Scholar
  24. 24.
    Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (Automatic Control Theory), Moscow: Nauka, 1986.Google Scholar
  25. 25.
    Tsyrlin, A.M., Balakirev, V.S., and Dudnikov, E.G., Variatsionnye metody optimizatsii upravlyaemykh ob”ektov (Variational Methods for Optimizing Controlled Objects), Moscow: Energiya, 1976.Google Scholar
  26. 26.
    Rapoport, E.Ya. and Pleshivtceva, Yu.E., Izv. Ross. Akad. Nauk, Energ., 2002, no. 5, p. 144.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations