Advertisement

High Temperature

, Volume 55, Issue 1, pp 107–113 | Cite as

Semianalytic method for heat transfer calculation in the liquid film under conditions of a constant heat flux on the wall

  • S. P. AktershevEmail author
  • M. V. Bartashevich
  • E. A. Chinnov
Heat and Mass Transfer and Physical Gasdynamics

Abstract

For calculating the heat transfer in the free-falling liquid film, a semianalytic method is offered in which the temperature field in the liquid is presented as a series of basis functions which satisfies boundary conditions. The proposed method is demonstrated by the example of the problem regarding the film heating under conditions of the constant heat flux on the wall taking into account the heat transfer on the interfacial surface. The analytical solution is derived for the thermal initial section, on which the liquid heating occurs in a thin layer near the wall. Calculations using the proposed method are well agreed with the numerical solution obtained by the finite-difference method and with experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nusselt, W., Z. VDI, 1916, no. 27, p. 541.Google Scholar
  2. 2.
    Nusselt, W., Z. VDI, 1916, no. 28, p. 569.Google Scholar
  3. 3.
    Nusselt, W., Z. VDI, 1923, vol. 67, no. 9, p. 206.Google Scholar
  4. 4.
    Graetz, L., Ann. Phys., 1885, vol. 25, p. 337.CrossRefGoogle Scholar
  5. 5.
    Bird, R.B., Stewart, W.E., and Lightoot, E.N., Transport Phenomena, New York Wiley, 1960.Google Scholar
  6. 6.
    Gimbutis, G., Teploobmen pri gravitatsionnom techenii plenki zhidkosti (Heat Transfer in a Gravitational Flow of Liquid Film), Vil’nyus Mokslas, 1988.Google Scholar
  7. 7.
    Sobin, V.M., J. Eng. Phys., 1980, vol. 39, no. 4, p. 1043.CrossRefGoogle Scholar
  8. 8.
    Grigorieva, N.I. and Nakoryakov, V.E., J. Eng. Phys. Thermophys., 1977, vol. 33, no. 5, p. 1349.CrossRefGoogle Scholar
  9. 9.
    Nakoryakov, V.E. and Grigor’eva, N.I., Teor. Osnovy Khim. Tekhnol., 1980, vol. 14, no. 4, p. 483.Google Scholar
  10. 10.
    Grossman, G., Int. J. Heat Mass Transfer, 1983, vol. 26, no. 3, p. 357.CrossRefGoogle Scholar
  11. 11.
    Conlisk, A.T., Chem. Eng. Sci., 1995, vol. 50, no. 4, p. 651.CrossRefGoogle Scholar
  12. 12.
    Chen, W. and Christensen, R.N., Int. J. Heat Mass Transfer, 2000, vol. 43, p. 167.CrossRefGoogle Scholar
  13. 13.
    Aubert, A., Candelier, F., and Solliec, C., J. Heat Transfer, 2010, vol. 132, 064501.CrossRefGoogle Scholar
  14. 14.
    Nakoryakov, V., Grigoryeva, N., and Bartashevich, M., Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 21–22, p. 4485.CrossRefGoogle Scholar
  15. 15.
    Hidouri, N., Chermiti, I., and Ben Brahim, A., J. Thermodyn., 2013, 909162.Google Scholar
  16. 16.
    Mittermaier, M., Schulze, P., and Ziegler, F., Int. J. Heat Mass Transfer, 2014, vol. 70, p. 990.CrossRefGoogle Scholar
  17. 17.
    Islam, R., Wijeysundera, N.E., and Ho, J.C., Int. J. Heat Mass Transfer, 2004, vol. 47, no. 2, p. 395.CrossRefGoogle Scholar
  18. 18.
    Aktershev, S.P., J. Eng. Thermophys., 2009, vol. 18, no. 2, p. 138.CrossRefGoogle Scholar
  19. 19.
    Aktershev, S.P., Thermophys. Aeromech., 2010, vol. 17, no. 3, p. 359.ADSCrossRefGoogle Scholar
  20. 20.
    Aubert, A., Candelier, F., and Solliec, C., Int. J. Heat Mass Transfer, 2012, vol. 39, p. 1073.CrossRefGoogle Scholar
  21. 21.
    Aktershev, S.P. and Alekseenko, S.V., High. Temp., 2014, vol. 52, no. 1. C. 78.CrossRefGoogle Scholar
  22. 22.
    Alekseenko, S.V., Nakoryakov, V.E., and Pokusaev, P.G., Chem. Eng. Commun., 1996, vol. 141, p. 359.CrossRefGoogle Scholar
  23. 23.
    Lel, V.V., Al-Sibai, F., and Kneer, R., Microgravity Sci. Technol., 2009, vol. 21.Google Scholar
  24. 24.
    Chinnov, E.A. and Kabov, O.A., High. Temp., 2004, vol. 42, no. 2, p. 267.CrossRefGoogle Scholar
  25. 25.
    Chinnov, E.A. and Abdurakipov, S.S., High. Temp., 2012, vol. 50, no. 3, p. 400.CrossRefGoogle Scholar
  26. 26.
    Chinnov, E.A. and Abdurakipov, S.S., Int. J. Heat Mass Transfer, 2013, vol. 56, p. 775.CrossRefGoogle Scholar
  27. 27.
    Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, 2 vols., Berlin: Springer, 1988, vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. P. Aktershev
    • 1
    • 2
    Email author
  • M. V. Bartashevich
    • 1
    • 2
  • E. A. Chinnov
    • 1
    • 2
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations