High Temperature

, Volume 54, Issue 4, pp 536–540 | Cite as

Calculations of thermal ignition time of hydrogen–air mixtures taking into account quantum corrections

  • I. V. Kochetov
  • A. P. Napartovich
  • Yu. V. Petrushevich
  • A. N. Starostin
  • M. D. Taran
Heat and Mass Transfer and Physical Gasdynamics


The effect of quantum corrections to the rate constants of chemical reactions on the time of thermal ignition of hydrogen-containing mixtures is studied. It is shown that, at high pressures (30–100) atm and temperatures in the range of (700–900) K, accounting for the quantum corrections to the initiation reaction H2 + O2 → 2OH brings the data on the calculated ignition delay times of the hydrogen-containing mixture into agreement with the previously published results of measurements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voevodskii, V.V. and Soloukhin, R.I., Dokl. Akad. Nauk SSSR, 1964, vol. 154, p. 1425.Google Scholar
  2. 2.
    Gel’fand, B.E., Popov, O.E., Medvedev, S.P., et al., Dokl. Ross. Akad. Nauk, 1993, vol. 330, p. 457.Google Scholar
  3. 3.
    Gel’fand, B.E., Medvedev, S.P., Khomik, S.V., et al., Dokl. Phys. Chem., 1996, vol. 349, nos. 4–6, p. 183.Google Scholar
  4. 4.
    Blumenthal, R., Fieweger, K., Komp, K.H., Adomeint, G., and Gelfand, B.E., in Proc. 20th Int. Symp. on Shock Waves, Sturtevant, B., Shepherd, J.E., and Hornung, H., Eds., Pasadena: World Sci., 1966, vol. 2, p. 935.Google Scholar
  5. 5.
    Pang, G.A., Davidson, D.F., and Hanson, R.K., Proc. Combust. Inst., 2009, vol. 32, p. 181.CrossRefGoogle Scholar
  6. 6.
    Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J., Combust. Flame, 1994, vol. 98, p. 59.CrossRefGoogle Scholar
  7. 7.
    Popov, N.A., High Temp., 2007, vol. 45, no. 2, p. 261.CrossRefGoogle Scholar
  8. 8.
    Popov, N.A., Teplofiz. Vys. Temp., 2010, no. 1 (Suppl.), p. 70.Google Scholar
  9. 9.
    Medvedev, S.P., Gelfand, B.E., Khomik, S.V., and Agafonov, G.L., J. Eng. Phys. Thermophys., 2010, vol. 83, no. 6, p. 1170.CrossRefGoogle Scholar
  10. 10.
    Medvedev, S.P., Agafonov, G.L., Khomik, S.V., and Gelfand, B.E., Combust. Flame, 2010, vol. 157, p. 1436.CrossRefGoogle Scholar
  11. 11.
    Voevodskii, V.V. and Soloukhin, R.I., Dokl. Akad. Nauk SSSR, 1964, vol. 154, p. 1425.Google Scholar
  12. 12.
    Elsworth, J.E., Haskell, W.W., and Read, I.A., Combust. Flame, 1969, vol. 13, p. 437.CrossRefGoogle Scholar
  13. 13.
    Divakov, O.G., Eremin, A.V., Ziborov, V.S., and Fortov, V.E., Dokl. Chem., 2000, vol. 373, nos. 4–6, p. 141.Google Scholar
  14. 14.
    Gel’fand, B.E., Medvedev, S.P., Khomik, S.V., and Agafonov, G.L., High Temp., 2010, vol. 48, no. 3, p. 436.CrossRefGoogle Scholar
  15. 15.
    Konnov, A.A., Combust. Flame, 2008, vol. 152, p. 507.CrossRefGoogle Scholar
  16. 16.
    Semenov, N., Acta Physicochim. URSS, 1945, vol. 20, p. 292.Google Scholar
  17. 17.
    Eletskii, A.V., Starostin, A.N., and Taran, M.D., Phys.–Usp., 2005, vol. 48, no. 3, p. 281.ADSCrossRefGoogle Scholar
  18. 18.
    Drakon, A.V., Emelianov, A.V., Eremin, A.V., Gurentsov, E.V., Petrushevich, Yu.V., Starostin, A.N., Taran, M.D., and Fortov, V.E., Phys. Rev. Lett., 2012, vol. 109, no. 18, p. 183201. doi 10.1103/PhysRev-Lett.109.183201ADSCrossRefGoogle Scholar
  19. 19.
    Drakon, A.V., Emel’yanov, A.V., Eremin, A.V., Petrushevich, Yu.V., Starostin, A.N., Taran, M.D., and Fortov, V.E., J. Exp. Theor. Phys., 2014, vol. 118, no. 5, p. 831.ADSCrossRefGoogle Scholar
  20. 20.
    NIST Chemical Kinetics Database. Scholar
  21. 21.
    Azatyan, V.V., Aleksandrov, E.N., and Troshin, A.F., Kinet. Catal., 1975, vol. 16, p. 306.Google Scholar
  22. 22.
    Jachimowski, C.J. and Houghton, W.M., Combust. Flame, 1971, vol. 17, p. 25.CrossRefGoogle Scholar
  23. 23.
    Karkach, S.P. and Osherov, V.I., J. Chem. Phys., 1999, vol. 110, p. 11918.ADSCrossRefGoogle Scholar
  24. 24.
    Balakhnin, V.P., Gershenzon, Yu.M., Kondrat’ev, V.N., and Nalbandyan, A.B., Dokl. Akad. Nauk SSSR, 1966, vol. 170, p. 1171.Google Scholar
  25. 25.
    Belles, F.E. and Brabbs, T.A., Symp. (Int.) Combust. [Proc.], 1971, vol. 13, p. 165.CrossRefGoogle Scholar
  26. 26.
    Ripley, D.L. and Gardner, W.C., J. Chem. Phys., 1966, vol. 44, p. 2285.ADSCrossRefGoogle Scholar
  27. 27.
    Deminsky, M., Chorkov, V., Belov, G., Cheshigin, I., Knizhnik, A., Shulakova, E., Shulakov, M., Iskandarova, I., Alexandrov, V., Petrusev, A., Kirillov, I., Strelkova, M., Umanski, S., and Potapkin, B., Comput. Mater. Sci., 2003, vol. 28, p. 169.CrossRefGoogle Scholar
  28. 28.
    Starostin, A.N., Taran, M.D., Petrushevich, Y.V., Medvedev, S.P., Agafonov, G.L., and Khomik, S.V., in Proc. 23rd Int. Colloq. on the Dynamics of Explosions and Reactive Systems, Irvine, USA, July 24–29, 2011.Google Scholar
  29. 29.
    Deminskii, M.A., Chernysheva, I.V., Umanskii, S.Ya., Strelkova, M.I., Baranov, A.E., Kochetov, I.V., Napartovich, A.P., Sommerer, T., Sadyugi, S., Kherbon, Dzh., and Potapkin, B.V., Russ. J. Phys. Chem. B, 2013, vol. 7, no. 4, p. 410.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Kochetov
    • 1
  • A. P. Napartovich
    • 1
  • Yu. V. Petrushevich
    • 1
  • A. N. Starostin
    • 1
  • M. D. Taran
    • 1
  1. 1.Troitsk Institute for Innovation and Fusion Research, TroitskMoscowRussia

Personalised recommendations