Advertisement

High Temperature

, Volume 54, Issue 1, pp 29–37 | Cite as

Effects of catalytic recombination on the surface of metals and quartz for the conditions of entry into the Martian atmosphere

  • A. F. Kolesnikov
  • A. N. Gordeev
  • S. A. Vasil’evskii
Plasma Investigations

Abstract

Heat transfer to water-cooled surfaces of metals and quartz is studied experimentally in subsonic jets of dissociated carbon dioxide at a stagnation pressure of 80 hPa and enthalpy of 9 and 14 MJ/kg, corresponding to the descent conditions of the ExoMars space vehicle into the Martian atmosphere, using an RF induction plasmatron at the Institute for Problems in Mechanics, Russian Academy of Sciences. The measurements of heat fluxes to surfaces of different materials showed the significant effect of the catalytic properties of surfaces that can be arranged in the following descending order of the heat flux: silver, copper, stainless steel, quartz. The effect of strong modification of the silver surface is recorded during the tests; the maximum value of the heat flux is achieved after 15-min exposure of the surface to the jet. In the computational analysis of heat transfer, we used a two-parameter model of heterogeneous recombination of O atoms and CO molecules at the surface. With this model, the effective recombination coefficient of CO molecules is determined on the water-cooled surfaces of quartz and stainless steel, based on the experimental data on heat fluxes.

Keywords

Heat Transfer Heat Flux Stagnation Point Stagnation Pressure Silver Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bose, D., Wright, M.J., and Palmer, G.E., J. Thermophys. Heat Transfer, 2006, vol. 20, no. 4, p. 652.CrossRefGoogle Scholar
  2. 2.
    Chen, Y.-K., Henline, W.D., and Tauber, M.E., J. Spacecr. Rockets, 1995, vol. 32, no. 2, p. 225.ADSCrossRefGoogle Scholar
  3. 3.
    Mitcheltree, R.A. and Gnoffo, P.A., J. Spacecr. Rockets, 1995, vol. 32, no. 5, p. 771.ADSCrossRefGoogle Scholar
  4. 4.
    Afonina, N.E., Gromov, V.G., and Kovalev, V.L., Fluid Dyn., 2000, vol. 35, no. 1, p. 87.ADSCrossRefGoogle Scholar
  5. 5.
    Kolesnikov, A.F., High Temp., 2014, vol. 52, no. 1, p. 110.CrossRefGoogle Scholar
  6. 6.
    Kovalev, R.V., Vlasov, V.I., and Zalogin, G.N., in Proceedings of the Fifth European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany, July 1–5, 2013, Munich, 2013, CD.Google Scholar
  7. 7.
    Kolesnikov, A.F., Gordeev, A.N., and Vasil’evskii, S.A., in Proceedings of the 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany, July 1–5, 2013, Munich, 2013, CD.Google Scholar
  8. 8.
    Vasil’evskii, S.A., Kolesnikov, A.F., and Yakushin, M.I., Teplofiz. Vys. Temp., 1991, vol. 29, no. 3, p. 521.ADSGoogle Scholar
  9. 9.
    Bykova, N.G., Vasil’evskii, S.A., Gordeev, A.N., Kolesnikov, A.F., Pershin, I.S., and Yakushin, M.I., Izv. Akad. Nauk, Mekh. Zhidk. Gaza, 1997, no. 6, p. 144.Google Scholar
  10. 10.
    Kolesnikov, A.F., Pershin, I.S., Vasil’evskii, S.A., and Yakushin, M.I., J. Spacecr. Rockets, 2000, vol. 37, no. 5, p. 573.ADSCrossRefGoogle Scholar
  11. 11.
    Vasil’evskii, S.A. and Kolesnikov, A.F., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of LowTemperature Plasma), Moscow: Yanus-K, 2008, Ser. B, vol. VII-1, part 2, p. 220.Google Scholar
  12. 12.
    Surzhikov, S.T., High Temp., 2010, vol. 48, no. 6, p. 910.CrossRefGoogle Scholar
  13. 13.
    Park, C., Howe, J.T., Jaffe, R.L., and Candler, G.V., J. Thermophys. Heat Transfer, 1994, vol. 8, no. 1, p. 9.ADSCrossRefGoogle Scholar
  14. 14.
    Afonina, N.E., Gromov, V.G., and Kovalev, V.L., Fluid Dyn., 2002, vol. 37, no. 1, p. 126.CrossRefGoogle Scholar
  15. 15.
    Kovalev, V.L., Geterogennye kataliticheskie protsessy v aerotermodinamike (Heterogeneous Catalytic Processes in Aerothermodynamics), Moscow: Fizmatlit, 2002.Google Scholar
  16. 16.
    Kolesnikov, A.F., Yakushin, M.I., Vasil’evskii, S.A., Pershin, I.S., and Gordeev, A.N., in Proceedings of the Third European Symposium on Aerothermodynamics for Space Vehicles, ESTEC, Noordwijk, The Netherlands, 24–26, November, 1998 (Special Publication), Harris, R.A., Ed., Noordwijk: The European Space Agency, 1999, no. SP-426, p. 537.Google Scholar
  17. 17.
    Cauquot, P., Cavadias, S., and Amouroux, J., J. Thermophys. Heat Transfer, 1998, vol. 12, no. 2, p. 206.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. F. Kolesnikov
    • 1
  • A. N. Gordeev
    • 1
  • S. A. Vasil’evskii
    • 1
  1. 1.Ishlinskii Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations