High Temperature

, Volume 53, Issue 3, pp 406–412 | Cite as

Study of the tensile strength of a liquid by molecular dynamics methods

  • V. L. Malyshev
  • D. F. Marin
  • E. F. Moiseeva
  • N. A. Gumerov
  • I. Sh. Akhatov
Heat and Mass Transfer and Physical Gasdynamics

Abstract

The cavitation tensile strength of a liquid for simple materials by the example of argon has been studied using molecular dynamics methods. Results on the negative tensile pressure have been obtained within the temperature range from 85 to 135 K. The tensile strength of liquid argon organization has been studied theoretically using the Redlich-Kwong equation of state. These approaches are in good agreement. Comparison with the earlier results of other authors has been performed. The test of the determination of the tensile pressure by molecular dynamics methods for homogeneous systems will make it possible to analyze qualitatively the cavitation strength in multicomponent systems as well as during consideration of heterogeneous nucleation, where the theoretical studies are extremely troublesome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knapp, R., Daily, J., and Hammitt, F., Cavitation, New York: McGraw-Hill, 1970.Google Scholar
  2. 2.
    Temperly, H.N.V., Proc. Phys. Soc., 1947, vol. 59, p. 199.ADSCrossRefGoogle Scholar
  3. 3.
    Trevena, D.H., J. Phys. D: Appl. Phys., 1975, vol. 8, p. L144.ADSCrossRefGoogle Scholar
  4. 4.
    Fisher, J.C., J. Appl. Phys., 1948, vol. 19, p. 1062.ADSCrossRefGoogle Scholar
  5. 5.
    Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, no. 11, p. 525.Google Scholar
  6. 6.
    Bertholet, M., Ann. Chim. Phys., 1850, vol. 30, p. 232.Google Scholar
  7. 7.
    Briggs, L.J., J. Appl. Phys., 1955, vol. 26, p. 1001.ADSCrossRefGoogle Scholar
  8. 8.
    Beams, J.W., Phys. Fluids, 1959, vol. 2, no. 1, p. 1.ADSCrossRefGoogle Scholar
  9. 9.
    Vinogradov, V.E., Pavlov, P.A., and Baidakov, V.G., J. Chem. Phys., 2008, vol. 128, p. 234508.ADSCrossRefGoogle Scholar
  10. 10.
    Kalikmanov, V.I., Wolk, J., and Kraska, T., J. Chem. Phys., 2008, vol. 128, p. 124506.ADSCrossRefGoogle Scholar
  11. 11.
    Kuksin, A.Yu., Norman, G.E., and Stegailov, V.V., High Temp., 2007, vol. 45, no. 1, p. 37.CrossRefGoogle Scholar
  12. 12.
    Kuksin, A.Yu., Norman, G.E., Pisarev, V.V., Stegailov, V.V., and Yanilkin, A.V., High Temp., 2010, vol. 48, no. 4, p. 511.CrossRefGoogle Scholar
  13. 13.
    Ho-Young, Kwak and Panton, R.L., J. Phys. D: Appl. Phys, 1984, vol. 18, p. 647.Google Scholar
  14. 14.
    Redlich, O. and Kwong, J.N.S., Chem. Rev., 1949, vol. 44, no. 1, p. 233.CrossRefGoogle Scholar
  15. 15.
    Wang, D., Zeng, D., and Cai, Z., J. Chongqing Univ. (Engl. Ed.), 2002, vol. 1, no. 2, p. 60.Google Scholar
  16. 16.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Claredon, 1987.MATHGoogle Scholar
  17. 17.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, no. 8, p. 3684.ADSCrossRefGoogle Scholar
  18. 18.
    Bo, Shi, PhD Dissertation, Los Angeles: University of California, United States, 2006.Google Scholar
  19. 19.
    Cosden, I.A. and Lukes, J.R., J. Heat Transfer, 2011, vol. 133, no. 10, p. 101501.CrossRefGoogle Scholar
  20. 20.
    Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (A Reference Book on Thermal and Physical Properties of Gases and Liquids), Moscow: Nauka, 1972.Google Scholar
  21. 21.
    Bazhirov, T.T., Norman, G.E., and Stegailov, V.V., J. Phys.: Condens. Matter, 2008, vol. 20, no. 11, p. 114113.ADSGoogle Scholar
  22. 22.
    Norman, G.E. and Stegailov, V.V., Mat. Model., 2012, vol. 24, no. 6, p. 3.MATHGoogle Scholar
  23. 23.
    Kuksin, A.Yu., Norman, G.E., Pisarev, V.V., Stegailov, V.V., and Yanilkin, A.V., Phys. Rev. B, 2010, vol. 82, p. 174101.ADSCrossRefGoogle Scholar
  24. 24.
    Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge: Cambridge University Press, 2004.MATHCrossRefGoogle Scholar
  25. 25.
    Malyshev, V.L., Marin, D.F., Moiseeva, E.F., Gumerov, N.A., and Akhatov, I.Sh., Vestnik NNGU, 2014, no. 3, p. 126.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. L. Malyshev
    • 1
    • 2
  • D. F. Marin
    • 1
    • 2
  • E. F. Moiseeva
    • 1
  • N. A. Gumerov
    • 1
    • 3
  • I. Sh. Akhatov
    • 1
    • 4
  1. 1.Center for Micro- and Nanoscale Dynamics of Disperse SystemsBashkir State UniversityUfaRussia
  2. 2.Mavlyutov Institute of Mechanics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia
  3. 3.Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  4. 4.North Dakota State UniversityFargoUSA

Personalised recommendations