Advertisement

High Temperature

, Volume 52, Issue 1, pp 12–18 | Cite as

Exploring ways to improve efficiency of gasdynamic energy separation

  • S. A. Burtsev
Plasma Investigations

Abstract

This work is devoted to research into ways to improve the efficiency of gasdynamic energy separation in the pipe Leontiev. It is shown that restoring the coefficient of temperature r depending on the Prandtl number Pr has the greatest impact on the magnitude of energy separation. The conducted analysis showed that for a gas with Pr = 0.7 the most promising ways to improve the efficiency of gasdynamic energy separation are the partial condensation of the working body and the use of regular relief that is deposited onto the wall of the supersonic channel in the pipe Leontiev. We have performed a modification of the calculation method and its verification using experimental data obtained on natural gas. The results of numerical modeling have shown that the use of regular relief (dimples) in this class of devices is effective.

Keywords

Heat Transfer Prandtl Number Supersonic Flow Subsonic Flow High Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kutateladze, S.S. and Leontiev, A.I., Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layers, New York: Taylor and Francis, 1990.Google Scholar
  2. 2.
    Eckert, E. and Drewitz, O., Luftfahrtforschung, 1942, vol. 19, p. 189.Google Scholar
  3. 3.
    Leontiev, A.I., RF Patent 2106581, 1998. Kl. MPK-6: F25B9/02, March 10, 1998.Google Scholar
  4. 4.
    Leontiev, A.I., High Temp., 1997, vol. 35, no. 1, p. 155.MathSciNetGoogle Scholar
  5. 5.
    Leontiev, A.I., Dokl. Phys., 1997, vol. 42, no. 6, p. 309.ADSGoogle Scholar
  6. 6.
    Burtsev, S.A., Vestn. Mosk. Gos. Tekh. Univ., Mashinostr., 1998, no. 2, p. 65.Google Scholar
  7. 7.
    Burtsev, S.A., Vestn. Mosk. Gos. Tekh. Univ., Mashinostr., 1999, no. 2, p. 48.Google Scholar
  8. 8.
    Burtsev, S.A. and Leontiev, A.I., Izv. Ross. Akad. Nauk, Energ., 2000, no. 5, p. 101.Google Scholar
  9. 9.
    Leontiev, A.I., Lushchik, V.G., and Yakubenko, A.E., High Temp., 2006, vol. 44, no. 2, p. 234.CrossRefGoogle Scholar
  10. 10.
    Leontiev, A.I., Lushchik, V.G., and Makarova, M.S., High Temp., 2012, vol. 50, no. 6, p. 739.CrossRefGoogle Scholar
  11. 11.
    Volchkov, E.P. and Makarov, M.S., Izv. Ross. Akad. Nauk, Energ., 2006, no. 2, p. 19.Google Scholar
  12. 12.
    Leontiev, A.I., Burtsev, S.A., Vizel’, Ya.M., and Chizhikov, Yu.V., Gazov. Prom-st., 2002, no. 11, p. 72.Google Scholar
  13. 13.
    Burtsev, S.A., Nauka Obraz., Elektron. Zh., 2004, no. 9. http://dx.doi.org/10.7463/0904.0516097.Google Scholar
  14. 14.
    Burtsev, S.A., Nauka Obraz., Elektron. Zh., 2005, no. 5. http://dx.doi.org/10.7463/0505.0529473.Google Scholar
  15. 15.
    Isaev, S.A. and Leontiev, A.I., High Temp., 2003, vol. 41, no. 5, p. 665.CrossRefGoogle Scholar
  16. 16.
    Burtsev, S.A., Vasil’ev, V.K., Vinogradov, Yu.A., Kiselev, N.A., and Titov, A.A., Nauka Obraz., Elektron. Zh., 2013, no. 1. http://dx.doi.org/10.7463/0113.0532996 Google Scholar
  17. 17.
    Titov, A.A., Izv. Ross. Akad. Nauk, Energ., 2010, no. 6, p. 126.Google Scholar
  18. 18.
    Zditovets, A.G. and Titov, A.A., Izv. Ross. Akad. Nauk, Energ., 2007, no. 2, p. 111.Google Scholar
  19. 19.
    Titov, A.A., Leontiev, A.I., Vinogradov, U.A., Zditovets, A.G., and Strongin, M.M., in Proceedings of the 14th International Heat Transfer Conference (IHTC-14), Washington, DC, United States, August 8–13, 2010, Washington, DC: American Society for Mechanical Engineers (ASME), 2010, p. 597.Google Scholar
  20. 20.
    Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 6567.CrossRefGoogle Scholar
  21. 21.
    Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2012, vol. 50, no. 4, p. 496.CrossRefGoogle Scholar
  22. 22.
    Burtsev, S.A., Candidate’s Dissertation in Technical Science, Moscow: Bauman Moscow State Technical University, 2001.Google Scholar
  23. 23.
    Burtsev, S.A., Vizel’, Ya.M., Leontiev, A.I., and Chizhikov, Yu.V., RF Patent 2155303, 2000. Kl. MPK-7: F25B9/04, F25B30/00, August 27, 2000.Google Scholar
  24. 24.
    Burtsev, S.A., Vizel’, Ya.M., Leontiev, A.I., and Chizhikov, Yu.V., RF Patent 2156271, 2000. Kl. MPK-7: C10G5/06, September 20, 2000.Google Scholar
  25. 25.
    Burtsev, S.A., Vizel’, Ya.M., Leontiev, A.I., and Chizhikov, Yu.V., RF Patent 2162190, 2001. Kl. MPK-7: F17D1/04, F25B9/02, January 20, 2001.Google Scholar
  26. 26.
    Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (A Reference Book on Thermal and Electrical Properties of Gases and Liquids), Moscow: Nauka, 1972.Google Scholar
  27. 27.
    Varaksin, A.Yu., Protasov, M.V., Ivanov, T.F., and Polyakov, A.F., High Temp., 2007, vol. 45, no. 2, p. 221.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. A. Burtsev
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations