High Temperature

, Volume 50, Issue 3, pp 340–347 | Cite as

Simulation of the properties of a binary carbon dioxide-water mixture under sub- and supercritical conditions

Thermophysical Properties of Materials


A method for determining the multiphase thermodynamic equilibriums of a binary mixture expressed in pressure-enthalpy-mixture composition variables is suggested. The use of such variables, in contrast to the classical thermodynamic pressure-temperature-composition variables, makes it possible to determine not only the two-phase, but also three-phase states of a mixture. The method can be used to describe real properties of mixtures in a wide range of pressure and temperature values containing critical points; it can be helpful in modeling of the mixture flows in a porous medium. The suggested problem of calculating the multiphase equilibrium can be visually interpreted in terms of geometry by constructing a convex envelope for the thermodynamic potential of the mixture. This method is used to study the phase diagram of the carbon dioxide-water mixture.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Todesco, M., Chiodini, G., and Macedonio, G., J. Volcanol. Geotherm. Res., 2003, vol. 125, p. 57.ADSCrossRefGoogle Scholar
  2. 2.
    Sedov, L.I., Mechanics of Continuous Media, Singapore: World Scientific, 1996, vol. 1.Google Scholar
  3. 3.
    Nigmatulin, R.I., Dynamics of Multiphase Media, London: Taylor and Francis, 1990, vol. 1.Google Scholar
  4. 4.
    Kulikovskii, A.G., Fluid Dyn., 2002, vol. 37, no. 5, p. 740.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Afanas’ev, A.A. and Barmin, A.A., Fluid Dyn., 2007, vol. 42, no. 4, p. 627.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Shagapov, V.Sh., Nasyrova, L.A., and Galiakbarova, E.V., High Temp., 2000, vol. 38, no. 5, p. 783.CrossRefGoogle Scholar
  7. 7.
    Nigmatulin, R.I., Shagapov, V.Sh., and Syrtlanov, V.R., J. Appl. Mech. Tech. Phys., 1998, vol. 39, no. 3, p. 421.ADSCrossRefGoogle Scholar
  8. 8.
    Watts, J.W., SPE Reservoir Eng., 1986, vol. 1, p. 243.ADSGoogle Scholar
  9. 9.
    Zaichenko, V.M., Maikov, I.L., Torchinskii, V.M., and Shpil’rain, E.E., High Temp., 2009, vol. 47, no. 5, p. 669.CrossRefGoogle Scholar
  10. 10.
    Brusilovskii, A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdenii nefti i gaza (Phase Transformations in the Development of Oil and Gas Deposits), Moscow: Graal’, 2002.Google Scholar
  11. 11.
    Passut, C.A. and Danner, R.P., Ind. Eng. Chem. Process Des. Dev., 1972, vol. 11, p. 543.CrossRefGoogle Scholar
  12. 12.
    Aleksandrov, A.A. and Grigor’ev, V.A., Tablitsy teplofizicheskikh svoistv vody i vodyanogo para (Tables of Thermophysical Properties of Water and Water Vapor: A Reference Book), Moscow: Moscow Power Engineering Institute (Technical University), 1999.Google Scholar
  13. 13.
    Tackenouchi, S. and Kennedy, G.C., Am. J. Sci., 1984, vol. 262, p. 1055.CrossRefGoogle Scholar
  14. 14.
    Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 5: Statistical Physics: Part 1, Oxford: Butterworth-Heinemann, 1951.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations