Advertisement

High Temperature

, Volume 50, Issue 2, pp 278–285 | Cite as

Numerical modeling of heat exchange and turbulent flow of fluid within tubes at supercritical pressure

  • E. P. Valueva
Heat and Mass Transfer and Physical Gasdynamics

Abstract

Modes of normal and degraded (with peaks of wall temperature) heat transfer are computed for the turbulent flow of carbon dioxide within a circular tube at supercritical pressure. Computation is based on a set of motion, continuity, and energy equations written under the approximation of a narrow channel. The turbulence model uses the Prandtl formula for the turbulent viscosity. The relationship for the travel length takes into account the effect of variation in the fluid properties and thermal acceleration through the tube section. Computation results for variation in the wall temperature along the tube fit the experimental data. An explanation is given for causes of the appearance of the peak on the wall temperature distribution along the tube in the area, where the fluid temperature is close to the pseudocritical temperature.

Keywords

Heat Transfer Heat Transfer Coefficient Nusselt Number Turbulence Model Wall Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirillov, P.L., in Trudy 4-i Rossiiskoi natsional’noi konferentsii po teploobmenu (Proceedings of the Fourth Russian National Conference on Heat Transfer, Moscow, Russia, October 23–27, 2006), Moscow: Moscow Power Engineering Institute, 2006, vol. 1, p. 231.Google Scholar
  2. 2.
    Kurganov, V.A., in Trudy 4-i Rossiiskoi natsional’noi konferentsii po teploobmenu (Proceedings of the Fourth Russian National Conference on Heat Transfer, Moscow, Russia, October 23–27, 2006), Moscow: Moscow Power Engineering Institute, 2006, vol. 1, p. 83.Google Scholar
  3. 3.
    Shitsman, M.E., Teplofiz. Vys. Temp., 1963, vol. 1, no. 2, p. 267.Google Scholar
  4. 4.
    Petukhov, B.S., Adv. Heat Transfer, 1970, vol. 6, p. 503.CrossRefGoogle Scholar
  5. 5.
    Kurganov, V.A., Teploenergetika, 1998, no. 3, p. 2.Google Scholar
  6. 6.
    Kurganov, V.A., Teploenergetika, 1998, no. 4, p. 35.Google Scholar
  7. 7.
    Kirillov, P.L., Lozhkin, V.V., and Smirnov, A.M., Preprint of State Science Center of the Russian Federation-Leipunskii Institute for Physics and Power Engineering, Obninsk, 2003, no. 2988.Google Scholar
  8. 8.
    Kim, J.K., Jeon, H.K., and Lee, J.S., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 4908.CrossRefGoogle Scholar
  9. 9.
    Jiang, P.-X., Zhang, Y., and Shi, R.-F., Int. J. Heat Mass Transfer, 2008, vol. 51, p. 3052.CrossRefGoogle Scholar
  10. 10.
    Song, J.H., Kim, H.J., Kim, H., and Bae, Y.Y., J. Supercrit. Fluids, 2008, vol. 44, p. 164.CrossRefGoogle Scholar
  11. 11.
    Zhu, X., Bi, Q., Yang, D., and Chen, T., Nucl. Eng. Des., 2009, vol. 239, p. 381.CrossRefGoogle Scholar
  12. 12.
    Schnurr, N.M., Sastry, V.S., and Shapiro, A.B., J. Heat Transfer, 1976, vol. 98, p. 609.CrossRefGoogle Scholar
  13. 13.
    Petukhov, B.S., Vilenskii, V.D., and Medvetskaya, N.V., High Temp., 1977, vol. 15, no. 3, p. 464.Google Scholar
  14. 14.
    Popov, V.N., Belyaev, V.M., and Valueva, E.P., High Temp., 1978, vol. 15, no. 6, p. 1043.Google Scholar
  15. 15.
    Koshizuka, S., Takano, N., and Oka, Y., Int. J. Heat Mass Transfer, 1995, vol. 38, p. 3077.CrossRefGoogle Scholar
  16. 16.
    Kim, S.H., Kim, Y.I., Bae, Y.Y., and Cho, B.H., in Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP’04), Pittsburgh, Pennsylvania, United States, June 13–17, 2004, Pittsburgh, 2004, paper 4047, p. 1527.Google Scholar
  17. 17.
    Roelofs, F., in Jahrestagung Kerntechnik (Annual Meeting on Nuclear Technology), Nürnberg, Germany, May 10–12, 2005, Nürnberg, 2005, p. 28.Google Scholar
  18. 18.
    Cheng, X., Kuang, B., and Yang, Y.H., Nucl. Eng. Des., 2007, vol. 273, p. 240.CrossRefGoogle Scholar
  19. 19.
    Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T., and Yoshida, S., Int. J. Heat Mass Transfer, 1972, vol. 15, p. 2575.CrossRefGoogle Scholar
  20. 20.
    Popov, V.N., High Temp., 1978, vol. 15, no. 4, p. 670.Google Scholar
  21. 21.
    Popov, V.N. and Belyaev, V.M., High Temp., 1979, vol. 16, no. 5, p. 864.Google Scholar
  22. 22.
    Ankudinov, V.B., Cand. Sci. (Tech.) Dissertation, Moscow: Moscow Power Engineering Institute, 1983.Google Scholar
  23. 23.
    Kurganov, V.A., Ankudinov, V.B., and Kaptil’nyi, A.G., in Turbulentnyi teploobmen pri smeshannoi konvektsii v vertikal’nykh trubakh (Turbulent Heat Transfer with a Mixed Convection in Vertical Tubes), Polyakov, A.F., Ed., Moscow: Institute of High Temperatures of the Academy of Sciences of the Soviet Union, 1989, p. 95.Google Scholar
  24. 24.
    Kurganov, V.A. and Maslakova, I.V., High Temp., 2010, vol. 48, no. 4, p. 541.CrossRefGoogle Scholar
  25. 25.
    Altunin, V.V., Thermophysical Properties of Carbon Dioxide, London: Collets, 1968.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. P. Valueva
    • 1
  1. 1.Moscow Power Engineering InstituteMoscowRussia

Personalised recommendations