Advertisement

High Temperature

, 47:796 | Cite as

Rayleigh-Taylor instability of viscoplastic liquid

  • A. Yu. Dem’yanov
  • A. N. Doludenko
  • N. A. Inogamov
  • E. E. Son
Thermophysical Properties of Materials
  • 73 Downloads

Abstract

The Rayleigh-Taylor instability of viscoplastic medium (VPM) is considered, which medium corresponds to real VPM or to the high-temperature limit of highly elastic-viscoplastic fluids. An effective rheological model is provided by the Bingham-Shvedov model (BSM) which is similar to the dry friction model in the mechanics of deformable solid. The main feature of BSM is the existence of yield stress corresponding to dry friction limit. Well-known in the literature is the solution for round pipe flow of BSM, in the case of which the presence of yield stress causes the emergence of a moving core at the center of flow. It is the prime objective of this study to construct a numerical model of three-dimensional flow of BSM in the gravity field, which is accompanied by a nonlinear stage of development of instability of VPM, and to analyze the correlation between the development of instability and yield stress.

Keywords

Newtonian Fluid Strain Rate Tensor Viscous Stress Tensor Yield Stress Fluid Viscoplastic Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Oxford Univ. Press, 1961.zbMATHGoogle Scholar
  2. 2.
    Cui, A. and Street, R.L., Environ. Fluid Mech., 2004, vol. 4, p. 197.CrossRefGoogle Scholar
  3. 3.
    Bychkov, V. and Liberman, M.A., Astron. Astrophys., 1995, p. 727.Google Scholar
  4. 4.
    Ribeyre, X., Tikhonchuk, V.T., and Bouquet, S., Phys. Plasmas, 2004, p. 4661.Google Scholar
  5. 5.
    Annett, C.H. and Racca, R.A., Am. J. Phys., 1985, vol. 53, p. 484.CrossRefADSGoogle Scholar
  6. 6.
    Ibanez, L.F., Piriz, A.R., and Sanz, J., Phys. Plasmas, 1997, vol. 4, p. 1117.CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Lopez Cela, J.J., Cortazar, O.D., Hoffmann, D.H.H. et al., Phys. Rev. E, 2005, vol. 72, p. 056313.CrossRefADSGoogle Scholar
  8. 8.
    Kumar, P., Mohan, H., and Singh, G.J., Transp. Porous Media, 2004, vol. 56, p. 199.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pardeep Kumar and Mahinder Singh, Phys. Sep. Sci. Eng., 2007, vol. 2007, Article ID 28908.Google Scholar
  10. 10.
    Alexandrou, A.N., McGilvreay, T.M., and Burgos, G., Non-Newton. Fluid Mech., 2001, vol. 100, p. 77.zbMATHCrossRefGoogle Scholar
  11. 11.
    Frigaard, I. and Nouar, Ch., Phys. Fluids, 2001, vol. 15, no. 10, p. 2843.CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    De Bruyn, J.R., Habdas, P., and Kim, S., Phys. Rev. E, 2002, vol. 66, p. 031504.CrossRefADSGoogle Scholar
  13. 13.
    Alexandrou, A.N., Menn, Ph.L., Georgiou, G., and Entov, V., Phys. Condens. Matter, 2005, p. 1219.Google Scholar
  14. 14.
    Maleki-Jirsaraei, N., Lindner, A., Rouhani, Sh., and Bonn, D., J. Phys.: Condens. Matter, 2005, p. 1219.Google Scholar
  15. 15.
    Taylor, G.I., Phil. Trans. R. Soc. London A, 1923, vol. 223, p. 289.CrossRefADSGoogle Scholar
  16. 16.
    Landry, M.P., Taylor-Couette Instability of a Bingham Fluid, BMath University of Waterloo, 2003.Google Scholar
  17. 17.
    Wang, X. and Gordaninejad, F., J. Intelligent Mater. Syst. Struct., 1999, vol. 10, no. 8, p. 601.CrossRefGoogle Scholar
  18. 18.
    Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Mechanics), Moscow: Nauka, 1970, vol. 1.Google Scholar
  19. 19.
    Inogamov, N.A., Dem’yanov, A.Yu., and Son, E.E., Gidrodinamika peremeshivaniya (Hydrodynamics of Stirring), Moscow: Izd. MFTI (Moscow Inst. of Physics and Technology), 1999.Google Scholar
  20. 20.
    Bellman, R. and Pennington, R.H., Q. J. Appl. Math., 1954, vol. 12, p. 151.zbMATHMathSciNetGoogle Scholar
  21. 21.
    Abaidullin, B.R. and Nazmeev, Yu.G., Teplofiz. Vys. Temp., 2008, vol. 46, no. 2, p. 312 (High Temp. (Engl. transl.), vol. 46, no. 2, p. 284).Google Scholar
  22. 22.
    Kovaleva, L.A., Minnigalimov, R.Z., and Zinnatullin, R.R., Teplofiz. Vys. Temp., 2008, vol. 46, no. 5, p. 792 (High Temp. (Engl. transl.), vol. 46, no. 5, p. 728).Google Scholar
  23. 23.
    Alifanov, O.M. and Cherepanov, V.V., Teplofiz. Vys. Temp., 2009, vol. 47, no. 3, p. 463 (High Temp. (Engl. transl.), vol. 47, no. 3, p. 438).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. Yu. Dem’yanov
    • 1
  • A. N. Doludenko
    • 1
  • N. A. Inogamov
    • 2
  • E. E. Son
    • 1
    • 3
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of Sciences (IVTAN)MoscowRussia

Personalised recommendations