Advertisement

High Energy Chemistry

, Volume 53, Issue 1, pp 87–88 | Cite as

Interaction of the Triplet State of Biscarbocyanine Dye with a Nitroxyl Radical

  • A. A. KostyukovEmail author
  • T. D. Nekipelova
  • I. E. Borissevitch
  • V. A. Kuzmin
SHORT COMMUNICATIONS PHOTOCHEMISTRY
  • 9 Downloads

Biscarbocyanine dyes involves two conjugated chromophores that causes the splitting of the excited singlet state level in these molecules as a result of dipole–dipole coupling and electron tunneling through the central heterocycle [1, 2]. The appearance of a new intense absorption band in the red and NIR spectral range coupled with a high quantum yield of intersystem crossing (ISC) opens the possibility to use biscarbocyanines as promising photosensitizers in photodynamic therapy (PDT) [3, 4, 5, 6]. The relatively high quantum yield of the triplet state distinguishes biscarbocyanines from many cyanine dyes, for which the low quantum yield of the triplet state is caused by efficient internal conversion (IC) via the mechanism of fast photoisomerization around the long polymethine chain [7]. Recently, it has been shown [8] that the introduction of nitroxyl radical into the chromophore structure with partial cyclization of the polymethine chain increases the yield of the triplet state due...

Notes

REFERENCES

  1. 1.
    Davydov, A.S., Teoriya molekulyarnykh eksitonov (Theory of Molecular Excitons), Moscow: Nauka, 1968.Google Scholar
  2. 2.
    Borisevich, Yu.E., Dokl. Akad. Nauk SSSR, 1978, vol. 241, p. 743.Google Scholar
  3. 3.
    Borisevich, Yu.E., Kuz’min, V.A., Mikhailenko, F.A., and Dyadyusha, G.G., Dokl. Akad. Nauk SSSR, 1976, vol. 228, p. 375.Google Scholar
  4. 4.
    Borisevich, Yu.E., Kuz’min, V.A., Dyadyusha, G.G., and Mikhailenko, F.A., Dokl. Akad. Nauk SSSR, 1976, vol. 229, p. 131.Google Scholar
  5. 5.
    Schaberle, F.A., Kuzmin, V.A., and Borissevitch, I.E., Biochim. Biophys. Acta, 2003, vol. 1621, p. 183.CrossRefGoogle Scholar
  6. 6.
    Murakami, L.S., Ferreira, L.P., Santos, J.S., Silva, R.S., Nomizo, A., Kuzmin, V.A., and Borissevitch, I.E., Biochim. Biophys. Acta, 2015, vol. 1850, p. 1150.CrossRefGoogle Scholar
  7. 7.
    Dempster, D.N., Morrow, T., Rankin, R., and Thompson, G.F., J. Chem. Soc. Faraday Trans. II, 1972, vol. 68, p. 1479.CrossRefGoogle Scholar
  8. 8.
    Jiao, L., Song, F., Cui, J., and Peng, X., Chem. Commun., 2018, vol. 54, p. 9198.CrossRefGoogle Scholar
  9. 9.
    Kuzmin, V.A., Tatikolov, A.S., and Borisevich, Y.E., Chem. Phys. Lett., 1978, vol. 53, p. 52.CrossRefGoogle Scholar
  10. 10.
    Kuz’min, V.A., Usp. Nauchn. Fotogr., 1984, vol. 22, p. 90.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Kostyukov
    • 1
    Email author
  • T. D. Nekipelova
    • 1
  • I. E. Borissevitch
    • 2
    • 3
  • V. A. Kuzmin
    • 1
  1. 1.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Sao Paulo UniversityRibeirao PretoBrazil
  3. 3.Institute of Physics, Federal University of GoiâniaGoiâniaBrazil

Personalised recommendations