Advertisement

High Energy Chemistry

, Volume 53, Issue 4, pp 265–275 | Cite as

Kinetics of Radical Chain Polymerization: 1. Time-Dependent Distributions of Macroradicals and Oligomers

  • I. P. Kim
  • E. I. Kats
  • V.A. BenderskiiEmail author
RADIATION CHEMISTRY

Abstract

Numerical and analytical solutions of kinetic equations and the relevant equations for the moments of distribution of macroradicals and oligomers during radical chain polymerization are presented. It has been shown that the initial chain growth occurs in the ballistic mode involving first-generation primary radicals. The chain transfer in which a macroradical, reacting with a solvent, forms an oligomer and the primary radical of the next generation, causes a transition from the ballistic to the diffusion mode in which distributions of chains of different generations are mixed. Time-dependent distributions have been found for chain propagation and transfer rate constants independent of chain length.

Keywords:

radical polymerization kinetic equations distribution moments ballistic and diffusion chain growth 

Notes

FUNDING

This work was supported by the Russian Academy of Sciences under the Presidium Program for Basic Research no. PFI I.55P and as the subject of the state assignment no. 0089-2014-0025.

REFERENCES

  1. 1.
    Ziff, R.M. and Stell, G., J. Chem. Phys., 1980, vol. 73, p. 3492.CrossRefGoogle Scholar
  2. 2.
    Leyvraz, F. and Tschudi, H.R., J. Phys. A, 1982, vol. 15, p. 1951.CrossRefGoogle Scholar
  3. 3.
    Ziff, R.M., Ernst, M.H., and Hendriks, E.M., J. Phys. A, 1983, vol. 16, p. 2293.CrossRefGoogle Scholar
  4. 4.
    Kuchanov, S.I., Adv. Polym. Sci., 1992, vol. 103, p. 3.Google Scholar
  5. 5.
    Blackman, J.A. and Marshall, A., J. Phys. A, 1994, vol. 27, p. 725.CrossRefGoogle Scholar
  6. 6.
    Davies, S.C., King, J.R., and Wattis, J.A.D., J. Phys. A, 1999, vol. 32, p. 7745.CrossRefGoogle Scholar
  7. 7.
    Duncan, D.B. and Soheili, A.R., Appl. Numer. Math., vol. 37, no. h. 2001, p. 1.Google Scholar
  8. 8.
    Leyvraz, F., Phys. Reps., 2003, vol. 383, p. 95.CrossRefGoogle Scholar
  9. 9.
    Kuchanov, S.I., Slot, H., and Stroeks, A., Prog. Polym. Sci., 2004, vol. 29, p. P. 513.Google Scholar
  10. 10.
    Wattis, J.A.D., Bolton, C.D., and Coveney, P.V., J. Phys. A, 2004, vol. 37, p. 2895.CrossRefGoogle Scholar
  11. 11.
    Wattis, J.A.D., J. Phys. A, 2006, vol. 39, p. 7283.CrossRefGoogle Scholar
  12. 12.
    Wattis, J.A.D., Physica D (Amsterdam), 2006, vol. 222, p. 1.CrossRefGoogle Scholar
  13. 13.
    Leyvraz, F., Phys. Reps., 2003, vol. 383, p. 95.CrossRefGoogle Scholar
  14. 14.
    Kim, I.P. and Benderskii, V.A., High Energy Chem., 2011, vol. 45, p. 372.CrossRefGoogle Scholar
  15. 15.
    Kim, I.P. and Benderskii, V.A., High Energy Chem., 2015, vol. 49, p. 1.CrossRefGoogle Scholar
  16. 16.
    Lynd, N.A. and Hillmyer, M.A., Macromolecules, 2007, vol. 40, p. 8050.CrossRefGoogle Scholar
  17. 17.
    Zhao, T., Zheng, Y., Poly, J., and Wang, W., Nat. Commun., 2013, vol. 4, p. 1873.CrossRefPubMedGoogle Scholar
  18. 18.
    Gentekos, D.T., Dupuis, L.N., and Fors, B.P., J. Am. Chem. Soc., 2016, vol. 138, p. 1848.CrossRefPubMedGoogle Scholar
  19. 19.
    Loskutov, A.Yu. and Mikhailov, A.S., Vvedenie v sinergetiku (Introduction to Synergetics), Moscow: Nauka, 1990.Google Scholar
  20. 20.
    Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1983.CrossRefGoogle Scholar
  21. 21.
    Zilman, A., Kiefer, J., Molino, F., and Safran, S.A., Phys. Rev. Lett., 2003, vol. 91, p. 015901.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim, I.P. and Benderskii, V.A., High Energy Chem., 2010, vol. 44, p. 357.CrossRefGoogle Scholar
  23. 23.
    Ben-Avrahan, D. and Halvin, S., Diffusion and Reactions in Fractal and Disordered Systems, Cambridge: Cambridge Univ. Press, 2000.CrossRefGoogle Scholar
  24. 24.
    Mendez, V. and Fort, J., Phys. Rev. E: Stat. Phys. Plasmas. Fluids, Relat. Interdiscip. Top., 2002, vol. 69, p. 031115.Google Scholar
  25. 25.
    Kopelman, R., J. Stat. Phys., 1986, vol. 42, p. 185.CrossRefGoogle Scholar
  26. 26.
    Kopelman, R., Science, 1988, vol. 241, p. 1620.CrossRefPubMedGoogle Scholar
  27. 27.
    Ouellette, N.T. and Gollub, J.P., Phys. Fluids, 2008, vol. 20, p. P. 064104.Google Scholar
  28. 28.
    Mikhailov, A.S. and Ertl, G., Phys. Chem. Chem. Phys., 2009, vol. 10, p. 86.CrossRefGoogle Scholar
  29. 29.
    World Scientific Lecture Notes in Complex Systems, book 11: Engineering of Chemical Complexity, Mikhailov, S.A. and Ertl, G., Eds., Singapore: World Scientific. 2013.Google Scholar
  30. 30.
    Halvin, S. and Ben-Avraham, D., Adv. Phys., 2002, vol. 51, p. 187.CrossRefGoogle Scholar
  31. 31.
    Bateman, H. and Erdelyi, A., Higher Transcendental Functions, New York: McGraw Hill, 1953, vol. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Landau Institute of Theoretical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations