High Energy Chemistry

, Volume 53, Issue 1, pp 13–21 | Cite as

Reverse Photochromism of Nitrosubstituted Bisspiropyran Based on Benzopyrroloindole

  • I. R. MardaleishviliEmail author
  • G. V. Lyubimova
  • A. V. Lyubimov
  • L. S. Kol’tsova
  • A. I. Shienok
  • P. P. Levin
  • A. S. Tatikolov
  • N. L. Zaichenko


The photochromic properties of new di- and tetranitrobisspiropyrans have been studied. Dinitrobisspiropyran solutions are characterized by direct photochromism, whereas reverse photochromism—coloration of the solution in the dark and its discoloration under the action of visible or UV light—is observed in solutions of tetranitrobisspiropyran in polar and weakly polar solvents and in polymer matrices of poly(methyl methacrylate) (PMMA) and polyvinyl butyral (PVB). The features of reverse photochromism are discussed, and a comparison with the photochromism of model nitrosubstituted monospiropyrans and dinitrobisspiropyran is carried out.


negative photochromism bisspiropyrans spectral and luminescent properties 



This work was carried out under the program of the State Assignment 0082-2018-0006 and 0082-2014-0015 and supported by the Russian Foundation for Basic Research, project no. 16-03-00275.


  1. 1.
    Organic Photochromic and Thermochromic Compounds, Grano, Y.C. and Guglielmetti, R.Y., Eds., New York: Kluwer Academic, 2002, vol. 1.Google Scholar
  2. 2.
    Aiken, S., Edgar, R.J.L., Gubbutt, C.D., and Heron, B.M., Dyes Pigments, 2018, vol. 149, p. 92.CrossRefGoogle Scholar
  3. 3.
    Barachevsky, V.A., Rev. J. Chem., 2017, vol. 7, no. 3, p. 334.CrossRefGoogle Scholar
  4. 4.
    Barachevskii, V.A. and Karpov, R.E., High Energy Chem., 2007, vol. 41, no. 3, p. 188.CrossRefGoogle Scholar
  5. 5.
    Barachevsky, V.A., Valova, T.M., Atabekyan, L.S., and Lyubimov, A.V., High Energy Chem., 2017, vol. 51, no. 6, p. 415.CrossRefGoogle Scholar
  6. 6.
    Levy, D. and Avnir, D., J. Phys. Chem., 1988, vol. 92, p. 4734.CrossRefGoogle Scholar
  7. 7.
    Dzhaparidze, K.G., Spirokhromeny (Spirochromenes), Tbilisi: Metsniereba, 1979.Google Scholar
  8. 8.
    Zakharova, M.I., Coudret, C., Pimienta, V., Micheau, J.C., Delbaere, S., Vermeersch, G., Metelitsa, A.V., Voloshin, N., and Minkin, V.I., Photochem. Photobiol. Sci., 2010, vol. 9, p. 199.CrossRefGoogle Scholar
  9. 9.
    Minkin, V.I., Usp. Khim., 2013, vol. 82, no. 1. p. 1.CrossRefGoogle Scholar
  10. 10.
    Mardaleishvili, I.R., Kol’tsova, L.S., Zaichenko, N.L., Shienok, A.I., Levin, P.P., and Tatikolov, A.S., High Energy Chem., 2015, vol. 49, no. 1, p. 30.CrossRefGoogle Scholar
  11. 11.
    Corley, C., Gillmore, J.G., Crisman, J., Kodis, G., Gray, C.L., Cherry, B.R., Sherman, B.D., Liddell, P.A., Paquette, M.M., Kelbaukas, L., Frank, N.L., Moore, A.L., Moore, T.A., and Gust, D., J. Am. Chem. Soc., 2014, vol. 136, p. 11994.CrossRefGoogle Scholar
  12. 12.
    Arsenov, V.D., Parshutkin, A.A., Marevtsev, V.S., and Cherkashin, M.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1984, p. 1987.Google Scholar
  13. 13.
    Samsoniya, Sh.A., Trapaidze, M.V., Nikolei-shvili, N.N., Japaridze, K.G., Maisuradze, J.P., and Kazmaier, U., Chem. Heterocycl. Compd., 2011, vol. 47, no. 9, p. 1098.CrossRefGoogle Scholar
  14. 14.
    Samsoniya, Sh.A., Trapaidze, M.V., Nikolei-shvili, N.N., Dzhaparidze, K.G., Maisuradze, Dzh.P., and Katsmaier, U., Khim. Geterotsikl. Soedin., 2010, no. 8, p. 1259.Google Scholar
  15. 15.
    Lyubimov, A.V., Lyubimova, G.V., and Shienok, A.I., Evraz. Soyuz Uchenykh (ESU), 2016, vol. 23, p. 2.Google Scholar
  16. 16.
    Hinnen, A. and Audio, G., Gautron, Bull. Soc. Chim. Fr., 1968, p. 2066.Google Scholar
  17. 17.
    Fihey, A., Perrier, A., Browne, W.R., and Jacquemin, D., Chem. Soc. Rev., 2015, vol. 44, p. 3719.CrossRefGoogle Scholar
  18. 18.
    Malkin, Ya.N., Kuz’min, V.A., Mikhailenko, F.A., and Dyadyusha, G.G., Izv. Akad. Nauk SSSR, Ser. Khim., 1976, no. 3, p. 555.Google Scholar
  19. 19.
    Malkin, Ya.N., Kuz,min, V.A., and Mikhailenko, F.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, no. 1, p. 83.Google Scholar
  20. 20.
    Mukhanov, E.S., Alekseenko, Yu.S., Luk’yanov, B.S., Dorogan, I.V., and Bezuglyi, S.O., High Energy Chem., 2010, vol. 44, no. 3, p. 210.CrossRefGoogle Scholar
  21. 21.
    Lee, S., Ji, S., and Kang, Y., Bull. Korean Chem. Soc., 2012, vol. 33, no. 11, p. 3740.CrossRefGoogle Scholar
  22. 22.
    Li, Y., Zhou, J., Wang, Y., Zhang, F., and Song, X., J. Photochem. Photobiol., A, 1998, vol. 113, p. 65.CrossRefGoogle Scholar
  23. 23.
    Dzhaparidze, K.G., Gachechiladze, G.G., Pavlenishvili, Ya.I., Gugava, M.T., Maisuradze, D.P., and Mamistvalova, N., Soobshch. Akad. Nauk. Gruz. SSR, 1973, vol. 69, p. 329.Google Scholar
  24. 24.
    Kundu, P.K., Lerner, A., Kucanda, K., Leitus, G., and Klajn, R., J. Am. Chem. Soc.,2014, vol. 136, p. 11270.CrossRefGoogle Scholar
  25. 25.
    Samsoniya, Sh.A., Trapaidze, M.V., Nikolei-shvili, N.N., Japaridze, K.G., and Maisuradze, J.P., Bull. Georgian Natl. Acad. Sci., 2013, vol. 7, no. 3, p. 51.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. R. Mardaleishvili
    • 1
    Email author
  • G. V. Lyubimova
    • 1
  • A. V. Lyubimov
    • 1
  • L. S. Kol’tsova
    • 1
  • A. I. Shienok
    • 1
  • P. P. Levin
    • 1
    • 2
  • A. S. Tatikolov
    • 2
  • N. L. Zaichenko
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations