High Energy Chemistry

, Volume 52, Issue 5, pp 433–439 | Cite as

Comparative Characterization of Relaxed Organic–Inorganic Hybrid Perovskite Structures Using Molecular Dynamic Simulation and X-ray Diffraction Data

  • T. Yu. Zelenyak
  • Kh. R. Rakhmonov
  • Kh. T. Kholmurodov
  • P. P. Gladyshev
  • A. R. Tameev
Nanosized Structures and Materials


Materials based on organic–inorganic hybrid perovskites MAPbX3 (X = I, Cl, or Br) having unique adsorption characteristics have been considered. Theoretical investigation data obtained by molecular modeling and results of X-ray diffraction measurements of the hybrid organic–inorganic perovskite structures based on methylammonium lead trichloride in different temperature ranges have been analyzed.Z


hybrid organic–inorganic perovskites photovoltaic devices molecular modeling (MD) radial pair distribution function X-ray diffraction analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Abrusci, A., Stranks, S.D., Docampo, P., Yip, H.L., Jen, A., and Snaith, H.J., Nano Lett., 2013, vol. 13, p. 3124.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu, D.Y. and Kelly, L., Nat. Photonics, 2014, vol. 8, p.133.CrossRefGoogle Scholar
  4. 4.
    Voronov, V.N., Preprint of Inst. of Physics, Siberian Branch, Russ. Acad. Sci., Krasnoyarsk, 2006, no. 000F. Accessed May 25, 2015.Google Scholar
  5. 5.
    Gladyshev, P.P., Yushankhai, V.Yu., and Syurakshina, L.A., Organicheskie i gibridnye nanomaterialy: poluchenie i perspektivy primeneniya (Organic and Hybrid Nanomaterials: Fabrication and Prospects for Use), Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo: Ivanovskii Gos. Univ., 2015.Google Scholar
  6. 6.
    Berry, J., Buonassisi, T., Egger, D.A., Hodes, G., Kronik, L., Loo, Y.L., Lubomirsky, I., et al., Adv. Mater., 2015, vol. 27, p. 5102.CrossRefPubMedGoogle Scholar
  7. 7.
    Meekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Horantner, M.T., Haghighirad, A., et al., Science, 2016, vol. 351, p. 6269.Google Scholar
  8. 8.
    Jafarzadeh, F., Javadpour, S., and Shariat, M.H., Ceram. Int., 2017, vol. 43, p. 11552.CrossRefGoogle Scholar
  9. 9.
    Frolova, L.A., Anokhin, D.V., Piryazev, A.A., Luchkin, S.Yu., Dremova, N.N., et al., J. Phys. Chem. Lett., 2017, vol. 8, p.67.CrossRefPubMedGoogle Scholar
  10. 10.
    Niezgoda, J.S., Foley, B.J., Chen, A., and Choi, J.J., ACS Energy Lett., 2017, vol. 2, p. 1043.CrossRefGoogle Scholar
  11. 11.
    Liao, J.-F., Rao, H.-S., Chen, B.-X., Kuang, D.-B., and Su, C.-Y., J. Mater. Chem. A, 2017, vol. 5, p. 2066.CrossRefGoogle Scholar
  12. 12.
    Zelenyak, T.Yu., Kholmurodov, Kh.T., Tameev, A.R., Vannikov, A.V., and Gladyshev, P.P., High Energy Chem., 2016, vol. 50, no. 5, p.400.CrossRefGoogle Scholar
  13. 13.
    Kholmurodov, K., Ibragimova, S., Gladishev, P., Vannikov, A., Tameev, A., and Zelenyak, T., Open J. Phys. Chem., 2015, vol. 5, p.110.CrossRefGoogle Scholar
  14. 14.
    Kholmurodov, K., Rahmonov, K., Qurboniyon, M., Zelenyak, T., Doroschkevich, A., Gladishev, P., and Yamamoto, T., Int. Symp. KSCMBS, 2016, vol. 10, p.91.Google Scholar
  15. 15.
    Oku, T., Solar Cells—New Approaches and Reviews, Kosyachenko, L.A., Ed., Rijeka: InTech, 2015, p.91.Google Scholar
  16. 16.
    Wang, Y., Zhang, Y., Zhang, P., and Zhang, W., Phys. Chem. Chem. Phys., 2015, vol. 17, p.1.CrossRefGoogle Scholar
  17. 17.
    Chu, K., Zhou, Y-H., Song, J-L., and Zhang, C., Polyhedron, 2017, vol. 4, p. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. Yu. Zelenyak
    • 1
  • Kh. R. Rakhmonov
    • 2
    • 3
  • Kh. T. Kholmurodov
    • 1
    • 2
  • P. P. Gladyshev
    • 1
  • A. R. Tameev
    • 4
  1. 1.Dubna State UniversityDubnaRussia
  2. 2.Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.National Nuclear Research University MEPhIMoscowRussia
  4. 4.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations