Advertisement

High Energy Chemistry

, Volume 52, Issue 5, pp 407–413 | Cite as

Surface Energy Characteristics of Polytetrafluoroethylene Bombarded with MeV Protons

  • I. F. Shaimukhametova
  • S. R. Allayarov
  • S. A. Bogdanova
  • G. P. Belov
  • K. D. Semavin
  • S. V. Demidov
  • D. A. Dixon
Radiation Chemistry
  • 12 Downloads

Abstract

Energy characteristics of the irradiated surface of a polytetrafluoroethylene film depend on the energy and fluence of bombarding MeV protons. Irradiation with 2–4 MeV protons leads to an increase in the surface free energy; 4 MeV protons at a fluence of 1015 proton/cm2 increase the polarity of the polymer surface by 40 times due to the appearance of functional groups, the polarity enhancement being manifested in an increase in the acid–base component of the surface energy by more than a factor of 50. There is a correlation between the dispersion component of the surface energy and the degree of crystallinity of the near-surface layer of the polymer a period. They both grow symbatically in the case of bombardment with 1–2 MeV protons and decrease upon irradiation with 4 MeV protons. It has been found that dehydrofluorination results in carbonization of the irradiated surface, a decrease in the fluorine content, and an increase in the proportion of oxygen due to oxidation of the radicals generated by proton bombardment.

Keywords

polytetrafluoroethylene MeV protons irradiation surface free energy and its components 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panshin, Yu.A., Malkevich, S.G., and Dunaevskaya, Ts.S., Ftoroplasty (Fluoroplastics), Leningrad: Khimiya, 1978.Google Scholar
  2. 2.
    Wall, L.A., Fluoropolymers, New York: Wiley–Interscience, 1972.Google Scholar
  3. 3.
    Andreitsev, D.F., Artem’eva, T.E., and Vil’nits, S.A., Tekhnicheskie i ekonomicheskie problemy vtorichnoi pererabotki i ispol’zovaniya polimernykh materialov (Technical and Economical Problems of Recycling and Reuse of Polymer Materials), Moscow: Khimiya, 1972.Google Scholar
  4. 4.
    Klinkov, A.S., Belyaev, P.S., and Sokolov, M.V., Utilizatsiya i vtorichnaya pererabotka polimernykh materialov (Disposal and Recycling of Polymer Materials), Moscow: TGTU, 2005.Google Scholar
  5. 5.
    Bouznik, V.M., Ross. Khim. Zh. (Zh. Ross. Khim. Obva im. D.I. Mendeleeva), 2008, vol. 52, p.7.Google Scholar
  6. 6.
    Mashkov, Yu.K., Ovchar, Z.N., Surikov, V.I., and Kalistratova, L.F., Kompozitsionnye materialy na osnove politetraftoretilena (Composite Materials Based on Polytetrafluoroethylene), Moscow: Mashinostroenie, 2005.Google Scholar
  7. 7.
    Ivanov, V.S., Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers), Leningrad: Khimiya, 1988.Google Scholar
  8. 8.
    Bogdanova, S.A., Shashkina, O.R., Barabanov, V.P., Belov, G.P., Zaikov, G.E., and Stoyanov, O.V., Polym. Res. J., 2012, vol. 7, p.1.Google Scholar
  9. 9.
    Bogdanova, S.A., Barabanov, V.P., Slobozhaninova, M.V., Ebel, A.O., and Stoyanov, O.V., Polym. Sci., Ser. D, 2008, vol. 1, p.226.CrossRefGoogle Scholar
  10. 10.
    Sevast’yanov, V.I. and Vasilets, V.N., Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va im. D.I. Mendeleeva), 2008, vol. 52, no. 3, p.72.Google Scholar
  11. 11.
    Takahashi, T., Hirano, Y., Takasawa, Y., Gowa, T., Fukutake, N., Oshima, A., and Washio, M., Radiat. Phys. Chem., 2011, vol. 80, p.253.CrossRefGoogle Scholar
  12. 12.
    Rychkov, A.A., Pak, V.N., and Kuznetsov, A.E., Izv. Ross. Gos. Pedag. Univ. im. A.I. Gertsena, 2007, vol. 7, p.137.Google Scholar
  13. 13.
    Yablokov, M.Yu., Kechek’yan, A.S., Bazhenov, S.L., Gil’man, A.B., Piskarev, M.S., and Kuznetsov, A.A., High Energy Chem., 2009, vol. 43, p.512.CrossRefGoogle Scholar
  14. 14.
    Baldanov, B.B. and Ranzhurov, Ts.V., Prikl. Fiz., 2014, no. 2, p.26.Google Scholar
  15. 15.
    Gol’dshtein, D.V., Gil’man, A.B., Shifrina, R.P., and Potapov, V.K., Khim. Vys. Energ., 1991, vol. 25, p.361.Google Scholar
  16. 16.
    Chapiro, A., Dera, G., and Jendrychowska-Bonamour, A.M., Eur. Polym. J., 1971, vol. 7, p. 1595.CrossRefGoogle Scholar
  17. 17.
    Abdurashitov, E.F., Bokun, V.Ch., Kritskaya, D.A., and Ponomarev, A.N., High Energy Chem., 2014, vol. 48, p.353.CrossRefGoogle Scholar
  18. 18.
    Dobo, J., Somogyi, A., and Czvikovszky, T., J. Polym. Sci., Part C, 1964, vol. 4, p. 1173.CrossRefGoogle Scholar
  19. 19.
    Restaino, A.J. and Reed, W.N., J. Polym. Sci., 1959, vol. 36, p.499.CrossRefGoogle Scholar
  20. 20.
    Lunkwitz, K., Lappan, U., and Lehman, D., Radiat. Phys. Chem., 2000, vol. 57, p.373.CrossRefGoogle Scholar
  21. 21.
    Khatipov, S.A. and Artamonov, N.A., Russ. J. Gen. Chem., 2009, vol. 79, p.616.CrossRefGoogle Scholar
  22. 22.
    Zhang, J., Yu, X., Li, H., and Liu, X., Appl. Surf. Sci., 2002, vol. 185, p.255.CrossRefGoogle Scholar
  23. 23.
    Oshima, A., Tabata, Y., Kudoh, H., and Seguchi, T., Radiat. Phys. Chem., 1995, vol. 45, p.269.CrossRefGoogle Scholar
  24. 24.
    Khatipov, S.A., Konova, E.M., and Artamonov, N.A., Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va im. D.I. Mendeleeva), 2008, vol. 52, p.64.Google Scholar
  25. 25.
    Khatipov, S.A., Nurmukhametov, R.N., Seliverstov, D.I., and Sergeev, A.M., Polym. Sci., Ser. A, 2006, vol. 48, p.153.CrossRefGoogle Scholar
  26. 26.
    Seki, K., Tanaka, H., Ohta, T., Aoki, Y., Imamura, A., Fujimoto, H., Yamamoto, H., and Inokuchi, H., Phys. Scr., 1990, vol. 41, p.167.CrossRefGoogle Scholar
  27. 27.
    Chatib, M., Roberfroid, E.M., Novis, Y., Pireaux, J.J., Caudano, R., Lutgen, P., and Feyder, G., J. Vac. Sci. Technol., 1989, vol. 7, p. 3233.CrossRefGoogle Scholar
  28. 28.
    Grakovich, P.N., Ivanov, L.F., Kalinin, L.A., Ryabchenko, I.L, Tolstopyatov, E.M, and Krasovskii, A.M., Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va im. D.I. Mendeleeva), 2008, vol. 52, p.97.Google Scholar
  29. 29.
    Ol’khov, Yu.A., Allayarov, S.R., Tolstopyatov, E.M., Grakovich, P.N., Kalinin, L.A., Dobrovol’skii, Yu.A., and Dixon, D.A., High Energy Chem., 2010, vol. 44, p.63.CrossRefGoogle Scholar
  30. 30.
    Milinchuk, V.K. and Tupikov, V.I., Organic Radiation Chemistry Handbook, Kemp. T.J., Ed., Chichester: Ellis Horwood, 1989.Google Scholar
  31. 31.
    Sun, J.Z., Zhang, Y.F., and Zhong, X.G., Polymer, 1994, vol. 35, p. 2881.CrossRefGoogle Scholar
  32. 32.
    Allayarov, S.R., Olkhov, Yu.A., Shaimukhametova, I.F., Bogdanova, S.A., Belov, G.P., and Dixon, D.A., High Energy Chem., 2016, vol. 50, p.339.CrossRefGoogle Scholar
  33. 33.
    Allayarov, S.R., Olkhov, Yu.A., Muntele, C.I., Dixon, D.A., and Ila, D., High Energy Chem., 2014, vol. 48, p.162.CrossRefGoogle Scholar
  34. 34.
    Owens, D.K. and Wendt, R.C., J. Appl. Polym. Sci., 1969, vol. 13, p. 1740.CrossRefGoogle Scholar
  35. 35.
    Fowkes, F.M., J. Rhys. Chem., 1963, vol. 67, p. 2538.CrossRefGoogle Scholar
  36. 36.
    Vijayendran, B.R., J. Appl. Polym. Sci., 1979, vol. 23, p. 733.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. F. Shaimukhametova
    • 1
    • 2
  • S. R. Allayarov
    • 1
  • S. A. Bogdanova
    • 2
  • G. P. Belov
    • 1
  • K. D. Semavin
    • 1
  • S. V. Demidov
    • 1
  • D. A. Dixon
    • 3
  1. 1.Institute of Problems in Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Kazan National Research Technological UniversityKazanRussia
  3. 3.Department of ChemistryThe University of AlabamaTuscaloosa, AlabamaUnited States

Personalised recommendations