High Energy Chemistry

, Volume 52, Issue 5, pp 414–418 | Cite as

Electron-Beam Processing of Petroleum Sludge

  • P. K. MetreveliEmail author
  • A. K. Metreveli
  • A. V. Ponomarev
  • Yu. S. Pavlov
Radiation Chemistry


Thermal radiolysis under the conditions of electron-beam distillation at a dose to 240 kGy converts petroleum sludge into C4–C31 hydrocarbons with a yield to 80 wt %. The condensate distilled off contains about 20 wt % alkenes, thereby indicating the chain regeneration and thermal fragmentation of bulky alkyl radicals. The yield of the condensate increases to 90 wt % in the case of mixing the initial petroleum sludge with lignin. In this case, the yield of alkenes is lower due to the binding of unsaturated compounds by the components of charcoal and tar and because of a change in the mechanism of alkane fragmentation in the presence of lignin.


petroleum sludge paraffins lignin radiolysis electron-beam distillation fuel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mustafaev, I. and Gulieva, N., Radiat. Phys. Chem., 1995, vol. 46, nos. 4–6, p. 1313.CrossRefGoogle Scholar
  2. 2.
    Cataldo, F., Keheyan, Y., and Baccaro, S., J. Radioanal. Nucl. Chem., 2004, vol. 262, no. 2, p.443.CrossRefGoogle Scholar
  3. 3.
    Zaykin, Yu.A., Zaykina, R.F., and Silverman, J., Radiat. Phys. Chem., 2004, vol. 69, no. 3, p.229.CrossRefGoogle Scholar
  4. 4.
    Zaikin, Yu.A. and Zaikina, R.F., Radiat. Phys. Chem., 2013, vol. 84, no. 1, p.6.CrossRefGoogle Scholar
  5. 5.
    Metreveli, A.K. and Ponomarev, A.V., High Energy Chem., 2016, vol. 50, no. 4, p.254.CrossRefGoogle Scholar
  6. 6.
    Ponomarev, A.V., Metreveli, P.K., Chulkov, V.N., and Bludenko, A.V., High Energy Chem., 2017, vol. 51, no. 5, p.369.CrossRefGoogle Scholar
  7. 7.
    Woods, R.J. and Pikaev, A.K., Applied Radiation Chemistry: Radiation Processing, Wiley–Interscience, New York, 1994.Google Scholar
  8. 8.
    Cserep, G., Gyorgy, I., Roder, M., and Wojnarovits, L., Radiation Chemistry of Hydrocarbons, Budapest: Akademiai Kiado, 1981.Google Scholar
  9. 9.
    Gaumann, T., Rappoport, S., and Ruf, A., J. Phys. Chem., 1972, vol. 76, no. 25, p. 3851.CrossRefGoogle Scholar
  10. 10.
    Amano, A., Horie, O., and Hanh, N.H., Int. J. Chem. Kinet., 1975, vol. 8, p.321.CrossRefGoogle Scholar
  11. 11.
    Ponomarev, A.V. and Ershov, B.G., High Energy Chem., 2018, vol. 52, no. 1, p. 58.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. K. Metreveli
    • 1
    Email author
  • A. K. Metreveli
    • 1
  • A. V. Ponomarev
    • 1
  • Yu. S. Pavlov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations