High Energy Chemistry

, Volume 52, Issue 5, pp 378–383 | Cite as

Photoreduction of 9,10-Phenanthrenequinone in the Presence of Dimethacrylate Oligomers and Their Polymers

  • N. A. Len’shina
  • M. Yu. Zakharina
  • R. S. Kovylin
  • M. A. Baten’kin
  • T. I. Kulikova
  • M. V. Arsen’ev
  • S. A. Chesnokov


The effective rate constants for the photoreduction (kH) of 9,10-phenanthrenequinone (PQ) in the presence of dimethacrylate monomers (ethylene glycol dimethacrylate (DMEG), triethylene glycol dimethacrylate (TGM-3), and oligocarbonate dimethacrylate (OKM-2)) and porous polymers based on them have been spectrophotometrically determined. The values of kH in the presence of DMEG and TGM-3 in benzene solutions and in the monomer media are two times greater than in the presence of OKM-2. The values of kH for PQ in pores of polyDMEG, polyTGM-3, and polyOKM-2 are approximately identical and do not depend on the pore size (up to hundreds of nanometers) and the specific surface area.


photoreduction 9,10-phenanthrenequinone oligomer methacrylate porous polymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urban, J. and Jandera, P., Anal. Bioanal. Chem., 2013, vol. 405, no. 7, p. 2123.CrossRefPubMedGoogle Scholar
  2. 2.
    Tetala, K.K.R. and van Beek, T.A., J. Sep. Sci., 2010, vol. 33, no. 3, p.422.CrossRefPubMedGoogle Scholar
  3. 3.
    Namera, A. and Saito, T., Trends Anal. Chem., 2013, vol. 45, p.182.CrossRefGoogle Scholar
  4. 4.
    Wang, Y., Tao, S., and An, Y., J. Mater. Chem. A, 2013, vol. 1, p. 1701.CrossRefGoogle Scholar
  5. 5.
    Eslava, S., Zhang, L., Esconjauregui, S., Yang, J., Vanstreels, K., Baklanov, M., and Saiz, E., Chem. Mater., 2013, vol. 25, no. 1, p.27.CrossRefGoogle Scholar
  6. 6.
    Kang, Q.-S., Shen, X.-F., Hu, N.-N., Hu, M.-J., Liao, H., Wang, H.-Z., He, Z.-K., and Huang, W.-H., Analyst, 2013, vol. 138, p. 2613.CrossRefPubMedGoogle Scholar
  7. 7.
    Svec, F. and Frechet, J.M.J., Science, 1996, vol. 273, no. 5272, p.205.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, P., Weng, Z., Guo, J., and Wang, C., Chem. Mater., 2011, vol. 23, no. 23, p. 5243.CrossRefGoogle Scholar
  9. 9.
    Han, W., Xin, Y., Hasegawa, U., and Uyama, H., Polym. Degrad. Stab., 2014, vol. 109, p.362.CrossRefGoogle Scholar
  10. 10.
    Peters, K.S., Cashin, A., and Timbers, P., J. Am. Chem. Soc., 2000, vol. 122, p.107.CrossRefGoogle Scholar
  11. 11.
    Len’shina, N.A., Arsen’ev, M.V., Shurygina, M.P., Chesnokov, S.A., and Abakumov, G.A., High Energy Chem., 2017, vol. 51, no. 3, p.209.CrossRefGoogle Scholar
  12. 12.
    Deng, J., Wang, L., Liu, L., and Yang, W., Prog. Polym. Sci., 2009, vol. 34, p.156.CrossRefGoogle Scholar
  13. 13.
    Zhou, T., Zhu, Y., Li, X., Liu, X., Yeung, K.W.K., Wu, S., Wang, X., Cui, Z., Yang, X., and Chu, P.K., Prog. Mater. Sci., 2016, vol. 83, p.191.CrossRefGoogle Scholar
  14. 14.
    Baten’kin, M.A., Konev, A.N., Mensov, S.N., and Chesnokov, S.A., Polym. Sci., Ser. A, 2011, vol. 53, no. 7, p.558.CrossRefGoogle Scholar
  15. 15.
    Chesnokov, S.A., Arsenyev, M.V., Kovylin, R.S., Lenshina, N.A., Baten’kin, M.A., Poddel’sky, A.I., and Abakumov, G.A., Appl. Organomet. Chem., 2017, vol. 31, no. 2, p. 3553.CrossRefGoogle Scholar
  16. 16.
    Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley–Interscience, 1972.Google Scholar
  17. 17.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1967.Google Scholar
  18. 18.
    Chesnokov, S.A., Zakharina, M.Yu., Shaplov, A.S., Chechet, Y.V., Lozinskaya, E.I., Mel’nik, O.A., Vygodskii, Y.S., and Abakumov, G.A., Polym. Int., 2008, vol. 57, no. 3, p.538.CrossRefGoogle Scholar
  19. 19.
    Chesnokov, S.A., Zakharina, M.Yu., Shaplov, A.S., Lozinskaya, E.I., Malyshkina, I.A., Abakumov, G.A., Vidal, F., and Vygodskii, Ya.S., J. Polym. Sci., Part A: Polym. Chem., 2010, vol. 48, no. 11, p. 2388.CrossRefGoogle Scholar
  20. 20.
    Shigorin, D.N., Tushishvili, L.Sh., Shcheglova, A.A., and Dokunikhin, N.S., Zh. Fiz. Khim., 1971, vol. 45, no. 3, p.511.Google Scholar
  21. 21.
    Maruyama, K., Shindo, H., and Maruyama, T., Bull. Chem. Soc. Jpn., 1971, vol. 44, p.585.CrossRefGoogle Scholar
  22. 22.
    Shurygina, M.P., Chesnokov, S.A., Lopatin, M.A., Cherkasov, V.K., and Abakumov, G.A., Izv. Akad. Nauk, Ser. Khim., 2004, vol. 53, no. 11, p. 2381.Google Scholar
  23. 23.
    Schönberg, A., Präparative organische Photochemie, Berlin; Springer, 1958.CrossRefGoogle Scholar
  24. 24.
    Zakharina, M.Yu., Fedoseev, V.B., Chechet, Yu.V., Chesnokov, S.A., and Shaplov, A.S., Polym. Sci., Ser. B, 2017, vol. 59, no. 6, p.665.CrossRefGoogle Scholar
  25. 25.
    Munikhes, V.M., Kuz’min, S.I., Kiryukhin, D.P., Mikhailov, A.I., and Barkalov, I.M., Vysokomol. Soedin. Ser. A, 1978, vol. 20, no. 4, p.810.Google Scholar
  26. 26.
    Fizicheskie velichiny (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Len’shina
    • 1
  • M. Yu. Zakharina
    • 1
  • R. S. Kovylin
    • 1
  • M. A. Baten’kin
    • 1
  • T. I. Kulikova
    • 1
  • M. V. Arsen’ev
    • 1
  • S. A. Chesnokov
    • 1
  1. 1.Razuvaev Institute of Organometallic ChemistryNizhny NovgorodRussia

Personalised recommendations