High Energy Chemistry

, Volume 52, Issue 5, pp 390–399 | Cite as

Excited Electron–Hole States in Molecular Chains

  • V. A. BenderskiiEmail author
  • E. I. Kats


The eigenvalues and the eigenfunctions of molecular excitons, charge-transfer excitons, and electron–hole pairs have been found in the approximation of electron and hole transfer between the lowest unoccupied and highest occupied orbitals in a rigid molecular chain of identical photosensitive molecules, the recognized model of organic solar cells. It has been shown that as the Coulomb binding energy decreases, the wave functions become superposition of functions of the increasing number of sites and the decay time, determined by electron or hole transitions, is shorter that the transfer time of the exciton as a whole, so that energy transfer and charge transfer become interrelated processes.


molecular excitons organic solar cells photoelectric effect energy transfer charge separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyons, L.E., J. Chem. Soc., 1957, p. 5001.Google Scholar
  2. 2.
    Kearns, D. and Calvin, M., J. Chem. Phys., 1958, vol. 29, p.950.CrossRefGoogle Scholar
  3. 3.
    Benderskii, V.A., Usov, N.N., and Fedorov, M.I., Dokl. Akad. Nauk SSSR, 1968, vol. 183, p. 1117.Google Scholar
  4. 4.
    Fedorov, M.I. and Benderskii, V.A., Fiz. Tekh. Poluprovodn. (Leningrad), 1970, vol. 4, p. 2007.Google Scholar
  5. 5.
    Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers, Oxford: Oxford Univ. Press, 1982.Google Scholar
  6. 6.
    Ghosh, A.K., Morel, D.L., Feng, T., Shaw, R.F., and Rowe, C.A., J. Appl. Phys., 45, 230 (1974).Google Scholar
  7. 7.
    Wohrle, D. and Meissner, D., Adv. Mater., 1991, vol. 3, p.129.CrossRefGoogle Scholar
  8. 8.
    May, V. and Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems, Berlin: Wiley–VCH, 2000.Google Scholar
  9. 9.
    Forrest, S.R., Nature (London), 2004, vol. 428, p.911.CrossRefGoogle Scholar
  10. 10.
    Organic Solar Cells: Materials and Device Physics, Choy, W.C.H., Ed., London: Springer, 2013.Google Scholar
  11. 11.
    Van Amerongen, H., Valkunas, L., and van Grondele, R., Photo-Synthetic Excitons, Singapore: World Scientific, 2000.CrossRefGoogle Scholar
  12. 12.
    Blakenship, R.E., Molecular Mechanisms of Photosynthesis, Oxford: Blackwell Science, 2002.CrossRefGoogle Scholar
  13. 13.
    Lee, H., Cheng, Y-C., and Fleming, G.R., Science, 2007, vol. 316, p. 1462.CrossRefPubMedGoogle Scholar
  14. 14.
    Wu, J., Liu, F., Shen, Y., Cao, J., and Silbey, R.J., New J. Phys., 2010, vol. 12, p. 105012.CrossRefGoogle Scholar
  15. 15.
    Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J., Nat. Photon, 2009, vol. 3, p.297.CrossRefGoogle Scholar
  16. 16.
    Schlenker, C.W., Barlier, V.S., Chin, S.W., Whited,M.T., McAnally, R.E., Forrest, S.R., and Thompson, M.E., Chem. Mater., 2011, vol. 23, p. 4132.CrossRefGoogle Scholar
  17. 17.
    Chen, Y.-H., Lin, L.-H., Lu, C.-W., Lin, F., Huang, Z.-Y., Lin, H.-W., Wang, P.-H., Liu, Y.-H., Wong, K.-T., Wen, J., Miller, D.J., and Darling, S.B., J. Am. Chem. Soc., 2012, vol. 134, p. 13616.CrossRefPubMedGoogle Scholar
  18. 18.
    Shinmura, Y., Kubo, M., Ishiyama, N., Kaji, T., and Hiramoto, M., AIP Adv., 2012, vol. 2, p. 032145.CrossRefGoogle Scholar
  19. 19.
    You, J., Dou, L., Hong, Z., Li, G., and Yang, Y., Prog. Polym. Sci., 2013, vol. 38, p. 1909.CrossRefGoogle Scholar
  20. 20.
    Gommans, H., Schols, S., Kadashchuk, A., Heremans, P., and Meskers, S.C.J., J. Phys. Chem. C, 2009, vol. 113, p. 2974.CrossRefGoogle Scholar
  21. 21.
    Lunt, R.R., Giebnik, N.C., Belak, A.A., Benziger, J.B., and Forrest, S.R., J. Appl. Phys., 2009, vol. 105, p. 053711.CrossRefGoogle Scholar
  22. 22.
    Luhman, W.A. and Holmes, R.J., Adv. Funct. Mater., 2011, vol. 21, p.764.CrossRefGoogle Scholar
  23. 23.
    Cnops, K., Rand, B.P., Cheyns, D., and Heremans, P., Appl. Phys. Lett., 2012, vol. 101, p. 143301.CrossRefGoogle Scholar
  24. 24.
    Agranovich, V.M., Teoriya eksitonov (Exciton Theory), Moscow: Nauka, 1968.Google Scholar
  25. 25.
    Agranovich, V.M. and Galanin, M.D., Electronic Excitation Energy Transfer in Condensed Matter, Amsterdam: North Holland, 1982.Google Scholar
  26. 26.
    Merrifield, R.E., J. Chem. Phys., 1961, vol. 34, p. 1835.CrossRefGoogle Scholar
  27. 27.
    Benderskii, V.A., Blyumenfel’d, L.A., and Popov, D.A., Zh. Strukt. Khim., 1966, vol. 7, p.370.Google Scholar
  28. 28.
    Chen, Y.-H., Lin, L.-H., Lu, C.-W., Lin, F., Huang, Z.-Y., Lin, H.-W., Wang, P.-H., Liu, Y.-H., Wong, K.-T., Wen, J., Miller, D.J., and Darling, S.B., J. Am. Chem. Soc., 2012, vol. 134, p. 13616.CrossRefPubMedGoogle Scholar
  29. 29.
    Huang, J.-H., Velusamy, M., Ho, K.-C., Lin, J.-T., and Chu, C.-W.J., Mater. Chem., 2010, vol. 20, p. 2820.CrossRefGoogle Scholar
  30. 30.
    Chen, M.C., Liaw, D.J., Huang, Y.C., Wu, H.Y., and Tai, Y., Sol. Energy Mater. Sol. Cells, 2011, vol. 95, p. 2621.CrossRefGoogle Scholar
  31. 31.
    Dennler, G., Prall, H-J., Koeppe, R., Egginger, M., Autengruber, R., and Sariciftci, N.S., Appl. Phys. Lett., 2006, vol. 89, p. 073502.CrossRefGoogle Scholar
  32. 32.
    Cheyns, D., Rand, B.P., and Heremans, P., Appl. Phys. Lett., 2010, vol. 97, p. 033301.CrossRefGoogle Scholar
  33. 33.
    Dou, L., You, J., Yang, J., Chen, C.-C., He, Y., Murase, S., Moriarty, T., Emery, K., Li, G., and Yang, Y., Nat. Photon., 2012, vol. 6, p.180.CrossRefGoogle Scholar
  34. 34.
    Lin, C.-F., Liu, S.-W., Lee, C.-C., Hunag, J.-C., Su, W.-C., Chiu, T.-L., Chen, C.-T., and Lee, J.-H., Sol. Energy Mater. Sol. Cells, 2012, vol. 103, p.69.CrossRefGoogle Scholar
  35. 35.
    Liang, Y., Xu, Z., Xia, J., Tsai, S-T., Wu, Y., Li, G., Ray, C., and Yu, Y., Adv. Mater., 2010, vol. 22, p. E135.CrossRefPubMedGoogle Scholar
  36. 36.
    Benderskii, V.A. and Kats, E.I., J. Exp. Theor. Phys., 2013, vol. 116, p.1.CrossRefGoogle Scholar
  37. 37.
    Callan, C.G., Jr. and Coleman, S., Phys. Rev. D: Part. Fields, 1977, vol. 16, p. 1762.CrossRefGoogle Scholar
  38. 38.
    Benderskii, V.A., Makarov, D.E., and Wight, C.A., Chemical Dynamics at Low Temperatures, New York: Wiley, 1994.CrossRefGoogle Scholar
  39. 39.
    Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika (Quantum Mechanics), Moscow: Nauka, 1989.Google Scholar
  40. 40.
    Sullivan, P., Daraud, A., Hancox, I., Beaumont, N., Mirri, G., Tucker, J.H.R., Hatton, R.A., Shipman, M., and Jones, T.S., Adv. Energy Mater., 2011, vol. 7, p. 352.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations