Advertisement

High Energy Chemistry

, Volume 52, Issue 5, pp 440–445 | Cite as

Modification of Weld Metal with Tungsten Carbide and Titanium Nitride Nanoparticles in Twin Submerged Arc Welding

  • N. P. Aleshin
  • M. V. Grigor’ev
  • N. V. Kobernik
  • R. S. Mikheev
  • A. S. Pankratov
  • A. V. Samokhin
  • N. V. Alekseev
  • M. A. Sinaisky
Nanosized Structures and Materials

Abstract

The influence of tungsten carbide and titanium nitride nanoparticles on the structure and properties of the weld metal of welded joints made by automatic twin submerged arc welding is considered. The nanoparticles have been introduced into the weld pool as a part of the “master alloy” based on nickel powder (PNE-1 according to GOST 9722). It has been shown that modifying the weld metal with tungsten carbide nanoparticles holds promise for enhancing the impact strength. In addition, it has been found that titanium nitride is prone to dissociation under the same conditions. However, microalloying with titanium, which is due to the release of titanium from the nitride, leads to an increase in the impact strength of the weld metal.

Keywords

submerged arc welding nanosized particles modification impact strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RD (Guideline Document) 25.160.10-KTN-015-15: Trunk pipeline transport of oil and oil products: Part 1. Welding in the construction and repair of vertical steel tanks (Moscow, 2015) [in Russian].Google Scholar
  2. 2.
    Shakhmatov, M.V., Shakhmatov, D.M., and Yakovlev, D.S., Svarka Diagnost., 2015, no. 6, p.14.Google Scholar
  3. 3.
    Khrenov, K.K., Poznyak, L.A., Yuzvenko, Yu.A., and Samotryasov, M.S., Svarochn. Proizvod., 1959, no. 6, p.6.Google Scholar
  4. 4.
    Krivonosova, E.A., Doctoral Dissertation in Engineering (Perm, 2005).Google Scholar
  5. 5.
    Kobernik, N.V., Pankratov, A.S., and Linnik, A.A., Svarka Diagnost., 2015, no. 5, p.11.Google Scholar
  6. 6.
    Kuznetsov, V.D., Smirnov, I.V., and Shapovalov, K.P., Prog. Tekhnol. Sistemy Mashinobuduvaniya, 2013, vol. 2, no. 46, p.143.Google Scholar
  7. 7.
    Gushchin, D.A., Extended Abstract of Candidate’s Dissertation in Engineering (Moscow, 2017).Google Scholar
  8. 8.
    Boldyrev, A.M., Grebenchuk, V.G., Gushchin, D.A., Tkachev, A.G., and Blinov, S.V., Nanotekhnol. Stroit., 2013, no. 6, p.53.Google Scholar
  9. 9.
    Boldyrev, A.M., Grigorash, V.V., Gushchin, D.A., and Grebenchuk, V.G., Nanotekhnol. Stroit., 2012, no. 2, p.56.Google Scholar
  10. 10.
    Samokhin, A.V., Alekseev, N.V., Kornev, S.A., Sinaiskii, M.A., Blagoveshchenskiy, Yu.V., and Kolesnikov, A.V., Plasma Chem. Plasma Process., 2013, vol. 33, no, 3, p.605.CrossRefGoogle Scholar
  11. 11.
    Samokhin, A.V., Kirpichev, D.E., Alekseev, N.V., Sinaisky, M.A., and Tsvetkov, Yu.V., High Energy Chem., 2016, vol. 50, no. 6, p.466.CrossRefGoogle Scholar
  12. 12.
    Sinaiskii, M.A., Samokhin, A.V., Alekseev, N.V., and Tsvetkov, Yu.V., Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, p.805.CrossRefGoogle Scholar
  13. 13.
    Zhang, Z. and Farrar, A., Weld. Res., 1997, no. 5, p. 183.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. P. Aleshin
    • 1
  • M. V. Grigor’ev
    • 1
  • N. V. Kobernik
    • 2
  • R. S. Mikheev
    • 2
  • A. S. Pankratov
    • 1
  • A. V. Samokhin
    • 3
  • N. V. Alekseev
    • 3
  • M. A. Sinaisky
    • 3
  1. 1.“Welding and Testing” Research and Training CenterBauman State Technical UniversityMoscowRussia
  2. 2.Bauman State Technical UniversityMoscowRussia
  3. 3.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations