Advertisement

High Energy Chemistry

, Volume 51, Issue 3, pp 229–232 | Cite as

Kinetic features of plasma etching of polycarbonate in oxygen plasma

  • A. A. Ovtsyn
  • S. A. Smirnov
  • A. I. Artyukhov
  • S. A. Shibaev
Plasma Chemistry
  • 29 Downloads

Abstract

Changes in surface properties and composition of the surface layer of polycarbonate of the Lexan LS2 and Lexan 8010 brands after treatment in the positive column of glow-discharge oxygen plasma have been studied. The amount of the polymer loaded for processing has been shown to affect the kinetics of etching and modifying the polycarbonate surface. It has been found that an increase in the amount of the polymer in the plasma reduces its etching rate and also affects the electrical parameters of plasma, which in turn can cause a change in the flux of active species onto the polymer surface and, consequently, a change in the rate of plasma-initiated heterogeneous processes.

Keywords

low-temperature plasma oxygen plasma plasma etching polycarbonate activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilman, A.B., Drake, A.I., Vengerskaya, L.E., Semenova, G.K., Kuznetsov, A.A., and Potapov, V.K., 3 Mezhdunarodnyi simpozium po teoreticheskoi i prikladnoi plazmokhiii. Sbornuk materialov (Proceedings of the 3rd International Symposium on Pure and Applied Plasma Chemistry), 2002, vol. 2, p. 313.Google Scholar
  2. 2.
    Gil’man, A.B., Vengerskaya, L.E., Grigor’eva, G.A., and Potapov, V.K., High Energy Chem., 1999, vol. 33, no. 6, p. 413.Google Scholar
  3. 3.
    Maksimov, A.I., Rybkin, V.V., and Kuvaldina, E.V., High Energy Chem., 1995, vol. 29, no. 1. p. 56.Google Scholar
  4. 4.
    Smirnov, S.A., Titov, V.A., and Rybkin, V.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 4, p. 12.Google Scholar
  5. 5.
    Titov, V.A., Smirnov, S.A., and Rybkin, V.V., High Energy Chem., 2009, vol. 43, no. 3, p. 172.CrossRefGoogle Scholar
  6. 6.
    Titov, V.A., Kuvaldina, E.V., Smirnov, S.A., Ivanov, A.N., and Rybkin, V.V., High Energy Chem., 2002, vol. 36, no. 2, p. 121.CrossRefGoogle Scholar
  7. 7.
    Kuvaldina, E.V., Maksimov, A.I., Rybkin, V.V., and Lyubimov, V.K., Khim. Vys. Energ., 1990, vol. 24, no. 5, p. 422.Google Scholar
  8. 8.
    Ovtsyn, A.A., Smirnov, S.A., and Artyukhov, A.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, vol. 59, no. 2, p. 52.Google Scholar
  9. 9.
    Rybkin, V.V., Kuvaldina, E.V., Smirnov, S.A., Titov, V.A., and Ivanov, A.N., High Energy Chem., 1999, vol. 33, no. 6, p. 409.Google Scholar
  10. 10.
    Kraus, R.G., Emmons, E.D., Thompson, J.S., and Covington, A.M., J. Polym. Sci., Part B: Polym. Phys., 2008, vol. 46, no. 7, p. 734CrossRefGoogle Scholar
  11. 11.
    Day, M. and Wiles, D.M., J. Polym. Sci., Part B: Polym. Phys., 1971, vol. 9, no. 9, p. 665.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Ovtsyn
    • 1
  • S. A. Smirnov
    • 1
  • A. I. Artyukhov
    • 1
  • S. A. Shibaev
    • 1
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations