Advertisement

High Energy Chemistry

, Volume 50, Issue 5, pp 389–394 | Cite as

Fabrication of microstructured materials based on chitosan and D,L-lactide copolymers using laser-induced microstereolithography

  • T. S. DeminaEmail author
  • K. N. Bardakova
  • E. A. Svidchenko
  • N. V. Minaev
  • G. I. Pudovkina
  • M. M. Novikov
  • D. V. Butnaru
  • N. M. Surin
  • T. A. Akopova
  • V. N. Bagratashvili
  • A. N. Zelenetskii
  • P. S. Timashev
Photonics

Abstract

The graft copolymers of chitosan and oligo(D,L-lactide) obtained by solid-phase synthesis have been used as the basis of photosensitive compositions for the fabrication of three-dimensional microstructures by laser-induced stereolithography. The electronic absorption spectra of the copolymers are close to the sum of the spectra of native chitosan and polylactide, which has been chosen as a model of grafted oligolactide chains. The fundamental absorption bands of the copolymers lie in a range to 500 nm, and their contribution to the absorption intensity of a photosensitive composition based on the copolymers at second harmonic laser frequency is insignificant. Depending on the macromolecular characteristics of the copolymers, the three-dimensional crosslinking of photosensitive compositions on their basis in the course of microstructuring occurs with different efficiency.

Keywords

laser stereolithography chitosan two-photon polymerization graft copolymers lactide regenerative medicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Melchels, F.P.W., Feijen, J., and Grijpma, D.W., Biomaterials, 2010, vol. 31, p.6121.CrossRefGoogle Scholar
  2. 2.
    Hutmacher, D.W., Biomaterials, 2000, vol. 21, p.2529.CrossRefGoogle Scholar
  3. 3.
    Rustamov, I.R., Dyatlov, V.A., Grebeneva, T.A., Dyatlov, A.V., Zaitsev, V.V., and Maleev, V.I., J. Mater. Chem. B, 2014, vol. 2, p. 4310.CrossRefGoogle Scholar
  4. 4.
    Raimondi, M.T., Eaton, S.M., Nava, M.M., Lagana, M., Cerullo, G., and Osellame, R., J. Appl. Biomater. Biomech., 2012, vol. 10, no. 1, p. P.55.Google Scholar
  5. 5.
    Croisier, F. and Jérõme, C., Eur. Polym. J., 2013, vol. 49, no. 4, p.780.CrossRefGoogle Scholar
  6. 6.
    Correa, D.S., Tayalia, P., Cosendey, G., Santos, D.S., Aroca, R.F., Mazur, E., and Mendonca, C.R., J. Nanosci. Nanotechnol., 2009, vol. 9, p. 5845.CrossRefGoogle Scholar
  7. 7.
    Kufelt, O., El-Tamer, A., Sehring, C., Meißner, M., Schlie-Wolter, S., and Chichkov, B.N., Acta Biomater., 2015, vol. 18, p.186.CrossRefGoogle Scholar
  8. 8.
    Akopova, T.A., Demina, T.S., Bagratashvili, V.N., Bardakova, K.N., Novikov, M.M., Selezneva, I.I., Istomin, A.V., Svidchenko, E.A., Cherkaev, G.V., Surin, N.M., and Timashev, P.S., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 87, p. 1088.CrossRefGoogle Scholar
  9. 9.
    Akopova, T.A., Timashev, P.S., Demina, T.S., Bardakova, K.N., Minaev, N.V., Burdukovskii, V.F., Cherkaev, G.V., Vladimirov, L.V., Istomin, A.V., Svidchenko, E.A., Surin, N.M., and Bagratashvili, V.N., Mendeleev Commun., 2015, vol. 25, no. 4, p.280.CrossRefGoogle Scholar
  10. 10.
    Timashev, P.S., Demina, T.S., Minaev, N.V., Bardakova, K.N., Koroleva, A.V., Kufelt, O.A., Chichkov, B.N., Panchenko, V.Ya., Akopova, T.A., and Bagratashvili, V.N., High Energy Chem., 2015, vol. 49, no. 4, p.300.CrossRefGoogle Scholar
  11. 11.
    Timashev, P.S., Bardakova, K.N., Demina, T.S., Pudovkina, G.I., Novikov, M.M., Markov, M.A., Asyutin, D.S., Pimenova, L.F., Svidchenko, E.A., Ermakov, A.M., Selezneva, I.I., Popov, V.K., Konovalov, N.A., Akopova, T.A., Solov’eva, A.B., Panchenko, V.Ya., and Bagratashvili, V.N., Sovrem. Tekhnol. Med., 2015, vol. 7, no. 3, p.20.CrossRefGoogle Scholar
  12. 12.
    Demina, T.S., Zaytseva-Zotova, D.S., Timashev, P.S., Bagratashvili, V.N., Bardakova, K.N., Sevrin, Ch., Svidchenko, E.A., Surin, N.M., Markvicheva, E.A., Grandfils, Ch., and Akopova, T.A., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 87, p. 1088.CrossRefGoogle Scholar
  13. 13.
    Demina, T.S., Akopova, T.A., Vladimirov, L.V., Zelenetskii, A.N., Markvicheva, E.A., and Grandfils, Ch., Mater. Sci. Eng. C, 2016, vol. 59, p.333.CrossRefGoogle Scholar
  14. 14.
    Scaiano, J.C., Stamplecoskie, K.G., and Hallett-Tapley, G.L., Chem. Commun. (Camb), 2012, vol. 48, no. 40, p.4798.CrossRefGoogle Scholar
  15. 15.
    Kerker, J.T., Leo, A.J., and Sgaglione, N.A., Sports Med. Arthrosc., 2008, vol. 16, no. 4, p.208.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. S. Demina
    • 1
    Email author
  • K. N. Bardakova
    • 2
  • E. A. Svidchenko
    • 3
  • N. V. Minaev
    • 2
  • G. I. Pudovkina
    • 2
  • M. M. Novikov
    • 2
  • D. V. Butnaru
    • 1
  • N. M. Surin
    • 3
  • T. A. Akopova
    • 3
  • V. N. Bagratashvili
    • 2
  • A. N. Zelenetskii
    • 3
  • P. S. Timashev
    • 2
  1. 1.Sechenov First Moscow State Medical UniversityMinistry of Health of the Russian FederationMoscowRussia
  2. 2.Institute of Laser and Information TechnologiesRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations