Advertisement

High Energy Chemistry

, Volume 50, Issue 1, pp 21–26 | Cite as

Photophysical properties of aqueous solutions of a styryl dye in the presence of cucurbit[n]uril (n = 5, 6, 8)

  • A. D. Svirida
  • D. A. Ivanov
  • N. Kh. Petrov
  • A. V. Vedernikov
  • S. P. Gromov
  • M. V. Alfimov
Photochemistry

Abstract

Photophysical properties of aqueous solutions of the styryl dye 4-[(E)-2-(3,4-dimethoxyphenyl)-1-ethylpyridinium] perchlorate (1) in the presence of cucurbit[n]urils (CB[n]; n = 5, 6, 8) have been studied by fluorescent spectroscopy methods. The fluorescence intensity of a 10–6 mol L–1 solution of 1 increases by a factor of 12.6 upon the formation of 1 : 1 inclusion complexes with CB[6] or 1.3 in complexes with CB[8]. Upon the formation of inclusion complexes, the average lifetime of the electronically excited state of 1 increases to about 1 ns for both CB[6] and CB[8]. On the basis of fluorescence anisotropy measurements, the rotational relaxation times were estimated to be 408, 314, and 183 ps for the complexes with CB[6], CB[8], and for unbound 1, respectively. Using the fluorescence titration method developed for the case of poorly soluble cavitands, the binding constant of 1 with CB[6] was determined to be 1.1 × 105 L mol–1. The addition of CB[5] does not lead to changes in the photophysical properties of a solution of 1, indicating the absence of complexes between CB[5] and 1. It has been found on the basis of the experimental data that the fluorescence rate constant of 1 decreases about twice in the complex with CB[8], but doubles in the complex with CB[6].

Keywords

Inclusion Complex Fluorescence Quantum Yield Photophysical Property High Energy Chemistry Styryl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., and Kim, K., Acc. Chem. Res., 2003, vol. 36, p. 621.CrossRefGoogle Scholar
  2. 2.
    Barooah, N., Mohanty, J., Pal, H., and Bhasikuttan, A.C., Org. Biomol. Chem., 2012, vol. 10, p. 5055.CrossRefGoogle Scholar
  3. 3.
    Dsouza, R.N., Pischel, U., and Nau, W.M., Chem. Rev., 2011, vol. 111, p. 7941.CrossRefGoogle Scholar
  4. 4.
    Petrov, N.Kh., Ivanov, D.A., Golubkov, D.V., Gromov, S.P., and Alfimov, M.V., Chem. Phys. Lett., 2009, vol. 480, p. 96.CrossRefGoogle Scholar
  5. 5.
    Zakharova, G.V., Zhizhimov, D.A., Avakyan, V.G., Sazonov, S.K., Gromov, S.P., and Chibisov, A.K., High Energy Chem., 2014, vol. 48, no. 2, p. 76.CrossRefGoogle Scholar
  6. 6.
    Zakharova, G.V., Zhizhimov, D.A., Sazonov, S.K., Avakyan, V.G., Gromov, S.P., Gorner, H., and Chibisov, A.K., J. Photochem. Photobiol., A, 2015, vol. 302, p. 69.CrossRefGoogle Scholar
  7. 7.
    Ivanov, D.A., Petrov, N.Kh., Nikitina, E.A., Basilevsky, M.V., Vedernikov, A.I., Gromov, S.P., and Alfimov, M.V., J. Phys. Chem. A, 2011, vol. 115, p. 4505.CrossRefGoogle Scholar
  8. 8.
    Mishra, A., Behera, R.K., Behera, P.K., Mishra, B.K., and Behera, G.B., Chem. Rev., 2000, vol. 100, p. 1973.CrossRefGoogle Scholar
  9. 9.
    Li, Z., Sun, S., Liu, F., Pang, Y., Fan, J., Song, F., and Peng, X., Dyes Pigments, 2012, vol. 93, p. 1401.CrossRefGoogle Scholar
  10. 10.
    Czar, M.F. and Jockusch, R.A., ChemPhysChem, 2013, vol. 14, p. 1138.CrossRefGoogle Scholar
  11. 11.
    Marquez, C. and Nau, W.M., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 4387.CrossRefGoogle Scholar
  12. 12.
    Vedernikov, A.I., Kuz’mina, L.G., Sazonov, S.K., Lobova, N.A., Loginov, P.S., Churakov, A.V., Strelenko, Yu.A., Howard, J.A.K., Alfimov, M.V., and Gromov, S.P., Izv. Akad. Nauk, Ser. Khim., 2007, p. 1797.Google Scholar
  13. 13.
    Ivanov, D.A., Petrov, N.Kh., Alfimov, M.V., Vedernikov, A.I., and Gromov, S.P., High Energy Chem., 2014, vol. 48, no. 4, p. 253.CrossRefGoogle Scholar
  14. 14.
    Thordarson, P., Chem. Soc. Rev., 2011, vol. 40, p. 1305.CrossRefGoogle Scholar
  15. 15.
    Tao, T., Biopolymers, 1961, vol. 6, p. 609.Google Scholar
  16. 16.
    Petrov, N.Kh., Gulakov, M.N., Alfimov, M.V., Busse, G., Frederichs, B., and Techert, S., J. Phys. Chem. A, 2003, vol. 107, no. (33), p. 6341.CrossRefGoogle Scholar
  17. 17.
    Gulakov, M.N., Petrov, N.Kh., Alfimov, M.V., and Techert, S., High Energy Chem., 2004, vol. 38, no. 6, p. 381.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. D. Svirida
    • 1
    • 2
  • D. A. Ivanov
    • 1
  • N. Kh. Petrov
    • 1
    • 2
  • A. V. Vedernikov
    • 1
  • S. P. Gromov
    • 1
    • 2
  • M. V. Alfimov
    • 1
    • 2
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations