High Energy Chemistry

, Volume 49, Issue 3, pp 199–206 | Cite as

Specifics of positron studies of microheterogeneous systems as applied to new polymeric sorbents

  • E. V. Belousova
  • V. G. Bekeshev
  • V. W. Gustov
  • V. A. Davankov
  • O. K. Krasil’nikova
  • I. B. Kevdina
  • A. V. Pastukhov
  • M. K. Filimonov
  • V. P. Shantarovich
Nanostructured Systems and Materials


The size distribution of free volume holes in mesoporous, microheterogeneous polymer sorbents based on linear rubber-modified divinylbenzene copolymers has been studied. Analysis of the results of the study and published data has shown that positron annihilation lifetime spectroscopy (PALS) applied to microheterogeneous systems, in contrast to homogeneous systems, is not necessarily sensitive to mesopores that occur at the boundaries of heterogeneities and determine the sorption or membrane properties of the modified materials. To obtain the complete information, additional procedures such as low-temperature (BET) gas adsorption and thermally stimulated luminescence (TSL) need to be used. This circumstance is due to a considerably long distance between mesopores in heterogeneous systems and limited mobility of positronium during its localization in a pore. In addition to the BET data, which largely give information on mesopores, PALS appears useful for studying micropores. The TLS technique makes it possible to judge on heterogeneity of test materials. The minimal concentration of mesopores detectable by the positron technique in the systems of interest has been determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krause, J., Ratzke, K., Faupel, M., Yampolskii, Yu., Shantarovich, V., and Dlubek, G., Macromolecules, 2008, vol. 41, p. 788.CrossRefGoogle Scholar
  2. 2.
    Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Yu, R.S., Budd, P.M., Yampolskii, Yu.P., Berdonosov, S.S., and Eliseev, A.A., Phys. Stat. Solidi C, 2007, vol. 4, p. 3776.CrossRefGoogle Scholar
  3. 3.
    Shantarovich, V.P., J. Polym. Sci., Part B: Polym. Phys., 2008, vol. 46, p. 2485.CrossRefGoogle Scholar
  4. 4.
    Weber, M.H. and Lynn, K.G., Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., Singapore: World Scientific, 2003, p. 167.Google Scholar
  5. 5.
    Winberg, P., Desitter, K., Datremont, C., Mullens, S., Vankelecom, I.F.J., and Maurer, F.H.J., Macromolecules, 2005, vol. 38, p. 3776.CrossRefGoogle Scholar
  6. 6.
    Bushell, A.F., Attfield, M.P., Mason, C.R., Badd, P.M., Yampolskii, Yu., Starannikova, L., Rebrov, A., Bazarelli, F., Bernardo, P., Janson, J.C., Lanc, M., Friess, K., Shantarovich, V., Gustov, V., and Isaeva, V., J. Membr. Sci., 2013, vol. 427, p. 48.CrossRefGoogle Scholar
  7. 7.
    Shantarovich, V.P., Gustov, V.W., Medintseva, T.I., Polyakova, A.V., Belousova, E.V., Filimonov, M.K., and Prut, E.V., Mater. Sci. Forum, 2011, vol. 666, p. 81.Google Scholar
  8. 8.
    Claes, S., Vanderzande, P., Mullens, S., Van Bael, M.K., and Maurer, F.H.J., Macromolecules, 2011, vol. 44, p. 2766.CrossRefGoogle Scholar
  9. 9.
    Gregg, S.G. and Sing, K.S.W., Adsorption Surface Area and Porosity, London: Academic, 1967.Google Scholar
  10. 10.
    Ito, Y., Hirade, T., Hamada, E., Suzuki, T., and Ito, Y., Acta Phys. Polonica A, 1999, vol. 95, p. 433.Google Scholar
  11. 11.
    Hirade, T., Maurer, F.H.J., and Eldrup, M.E., Rad. Phys. Chem., 2000, vol. 58, p. 465.CrossRefGoogle Scholar
  12. 12.
    Shantarovich, V.P., Hirade, T., Kevdina, I.B., Gustov, V.W., and Oleinik, E.F., Acta Phys. Polonica A, 2001, vol. 99, p. 497.Google Scholar
  13. 13.
    Shantarovich, V.P., Yu, R.S., Kino, Ya., Hama, Ya., and Gustov, V.V., High Energy Chem., 2011, vol. 45, no. 4, p. 342.CrossRefGoogle Scholar
  14. 14.
    Nikol’skii, V.G., Khim. Vys. Energ., 1968, no. 2, p. 271.Google Scholar
  15. 15.
    Nikolskii, V.G., Pure Appl. Chem., 1982, vol. 54, p. 493.Google Scholar
  16. 16.
    Mogensen, O.E., Positron Annihilation in Chemistry, Goldanskii, V.I. Schaffer, F.P, Eds., Berlin: Springer, 1995, p. 66.Google Scholar
  17. 17.
    Stepanov, S.V. and Byakov, V.M., Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., Singapore: World Scientific, 2003, p. 117.Google Scholar
  18. 18.
    Shantarovich, V., Gustov, V., Polyakova, A., Belousova, E., Filimonov, M., and Yampolskii, Yu, Phys. Status Solidi C, 2009, vol. 6, no. 11, p. 2387.CrossRefGoogle Scholar
  19. 19.
    Shantarovich, V.P., Gustov, V.W., Belousova, E.V., Polyakova, A.V., Bekeshev, V.G., Kevdina, I.B., Yampolskii, Yu.P., and Pastukhov, A.V., Acta Phys. Polonica A, 2014, vol. 125, no. 3, p. 806.CrossRefGoogle Scholar
  20. 20.
    Shantarovich, V.P., Gustov, V.W., Belousova, E.V., Polyakova, A.V., Bekeshev, V.G., and Kevdina, I.B., Russ. J. Phys. Chem. B, 2014, vol. 8, no. 4, p. 559.CrossRefGoogle Scholar
  21. 21.
    Tokarev, A.V., Bondarenko, G.N., and Yampol’skii, Yu.P., Polym. Sci., Ser. A, 2007, vol. 49, no. 8, p. 896.CrossRefGoogle Scholar
  22. 22.
    Budd, P.M., Msaib, K.J., Tattershall, C.S., Ghanem, B.S., Raynolds, K.J., McKeown, N.B., and Fritsch, D., J. Membr. Sci., 2005, vol. 251, p. 263.CrossRefGoogle Scholar
  23. 23.
    Hofmann, D., Heuchel, M., Yampolskii, Yu., Khotimskii, V., and Shantarovich, V., Macromolecules, 2002, vol. 35, p. 2129.CrossRefGoogle Scholar
  24. 24.
    Shantarovich, V.P., Suzuki, T., He, C., Davankov, V.A., Pastukhov, A.V., Tsyurupa, M.P., Kondo, K., and Ito, Y., Macromolecules, 2002, vol. 35, p. 9723.CrossRefGoogle Scholar
  25. 25.
    Hofmann, D., Entrialgo, CostanoM., Lerbert, A., Heuchel, M., and Yampolskii, Y., Macromolecules, 2003, vol. 36, p. 8528.CrossRefGoogle Scholar
  26. 26.
    Yampol’skii, Yu.P., Usp. Khim., 2007, vol. 76, no. 1, p. 66.Google Scholar
  27. 27.
    Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Kevdina, I.B., Khotimskii, V.S., and Yampolskii, Yu.P, Rad. Phys. Chem., 2000, vol. 58, p. 513.CrossRefGoogle Scholar
  28. 28.
    Dubinin, M.M., Chemistry and Physics of Carbon, Walker, P.L., Jr., Ed., New York: Marcel Dekker, 1966, vol. 2, p.51.Google Scholar
  29. 29.
    Sing, K.S.W., Surface Area Determination, Everett, D.H. and Ottewill, R.H, Eds., London: Butterworth, 1970, p. 25.Google Scholar
  30. 30.
    Stoeckli, H.F., Rebstein, P., and Ballerini, L., Carbon, 1990, vol. 27.Google Scholar
  31. 31.
    Dubinin, M.M., Usp. Khim., 1955, vol. 24, no. 6, p. 513.Google Scholar
  32. 32.
    Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.CrossRefGoogle Scholar
  33. 33.
    Mikhail, R.Sh., Brunauer, S., and Bodor, E.E., J. Colloid Interface Sci., 1968, vol. 26, p. 45.CrossRefGoogle Scholar
  34. 34.
    Gun’ko, V.M., Leboda, R., Skubiszewska-Zieba, J., Gawdzik, B., and Charmas, B., Appl. Surf. Sci., 2005, vol. 252, p. 612.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Belousova
    • 1
  • V. G. Bekeshev
    • 1
  • V. W. Gustov
    • 1
  • V. A. Davankov
    • 2
  • O. K. Krasil’nikova
    • 3
  • I. B. Kevdina
    • 1
  • A. V. Pastukhov
    • 2
  • M. K. Filimonov
    • 1
  • V. P. Shantarovich
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia

Personalised recommendations