Advertisement

High Energy Chemistry

, Volume 48, Issue 4, pp 282–286 | Cite as

Dielectric properties of polytetrafluoroethylene films modified by direct current discharge

  • M. Yu. YablokovEmail author
  • V. G. Shevchenko
  • A. B. Gilman
  • A. A. Kuznetsov
Plasma Chemistry

Abstract

Dielectric characteristics of polytetrafluoroethylene (PTFE) films modified by direct current discharge at the anode and cathode have been studied as a function of frequency and temperature. It has been found that the dielectric constant increases slightly as a result of plasma treatment and weakly depends on temperature. It has been shown that the frequency dependences of conductivity at 20°C differ somewhat for the original and treated films, but the closer resemble one another at 80°C, with the difference in the critical conductivity indices becoming more significant.

Keywords

PTFE Dielectric Permittivity High Energy Chemistry Dielectric Characteristic Water Glycerol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Entsiklopediya polimerov (Polymer Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1977, vol. 3.Google Scholar
  2. 2.
    Lunkwitz, K., Lappan, U., and Lehman, D., Radiat. Phys. Chem., 2000, vol. 57, nos. 3–6, p. 373.CrossRefGoogle Scholar
  3. 3.
    Kim, S.R., J. Appl. Polym. Sci., 2000, vol. 77, no. 9, p. 1913.CrossRefGoogle Scholar
  4. 4.
    Liu, C.Z., Wu, J.Q., Ren, L.Q., Tong, J., Li, J.Q., Cui, N., Brown, N.M.D., and Meenan, B.J., Mater. Chem. Phys., 2004, vol. 85, nos 2–3, p. 340.CrossRefGoogle Scholar
  5. 5.
    Pappas, D., Bujanda, A.A., Orlicki, J.A., and Jensen, R.E., Surf. Coat. Technol., 2008, vol. 203, nos. 5–7, p. 830.CrossRefGoogle Scholar
  6. 6.
    Xu, H., Hu, Zh., Wu, Sh., and Chen, Y., Mater. Chem. Phys., 2003, vol. 80, no. 1, p. 278.CrossRefGoogle Scholar
  7. 7.
    Park, Y.W., Tasaka, S., and Inagaki, N., J. Appl. Polym. Sci., 2002, vol. 83, no. 6, p. 1258.CrossRefGoogle Scholar
  8. 8.
    Tu, Ch.Y., Liu, Y.L., Lee, K.R., and Lai, J.Y., Polymer, 2005, vol. 46, no. 18, p. 6976.CrossRefGoogle Scholar
  9. 9.
    Piskarev, M.S., Gilman, A.B., Shmakova, N.A., and Kuznetsov, A.A., High Energy Chem., 2008, vol. 42, no. 2, p. 137.CrossRefGoogle Scholar
  10. 10.
    Gilman, A., Piskarev, M., Shmakova, N., Yablokov, M., and Kuznetsov, A., Mater. Sci. Forum, 2010, vol. 636/637, p. 1019.CrossRefGoogle Scholar
  11. 11.
    Piskarev, M.S., Batuashvili, M.R., Yablokov, M.Yu., Kechek’yan, A.S., Gil’man, A.B., and Kuznetsov, A.A., Khim. Khim. Tekhnol., 2012, vol. 55, no. 4, p. 35.Google Scholar
  12. 12.
    Yablokov, M.Yu., Sokolov, I.V., Malinovskaya, O.S., Gil’man, A.B., and Kuznetsov, A.A., High Energy Chem., 2013, vol. 47, no. 1, p. 32.CrossRefGoogle Scholar
  13. 13.
    Yablokov, M.Yu., Kechek’yan, A.S., Bazhenov, S.L., Gilman, A.B., Piskarev, M.S., and Kuznetsov, A.A., High Energy Chem., 2009, vol. 43, no. 6, p. 512.CrossRefGoogle Scholar
  14. 14.
    Matveev, V.K., Noifekh, A.I., Klinshpont, E.R., and Milinchuk, V.K., Khim. Vys. Energ., 1992, vol. 26, no. 2, p. 130.Google Scholar
  15. 15.
    Matveev, V.K., Smirnova, N.A., and Milinchuk, V.K., Vysokomol. Soedin., 1993, vol. 35, no. 6, p. 297.Google Scholar
  16. 16.
    Park, S.-J., Sohn, H.-J., Hong, S.-K., and Shin, G.-S., J. Colloid Interface Sci., 2009, vol. 332, no. 1, p. 246.CrossRefGoogle Scholar
  17. 17.
    Park, S-J., Lee, E-J., and Kim, B-J., J. Colloid Interface Sci., 2008, vol. 319, no. 1, p. 365.CrossRefGoogle Scholar
  18. 18.
    Trabzon, L. and Awadelkarim, O.O., Microelectronic Eng., 2003, vol. 65, no. 4, p. 463.CrossRefGoogle Scholar
  19. 19.
    Kahouli, A., Sylvestre, A., Laithier, J.-F., Pairis, S., Garden, J.-L., Andre, E., Jomni, F., and Yangui, B., J. Phys. D: Appl. Phys., 2012, vol. 45, no. 21, p. 215306.CrossRefGoogle Scholar
  20. 20.
    Richkov, D., Yablokov, M., and Richkov, A., Appl. Phys. A: Mater. Sci. Process., 2012, vol. A107, no. 3, p. 589.CrossRefGoogle Scholar
  21. 21.
    Wu, S., Polymer Interfaces and Adhesion, New York: Marcel Dekker, 1982.Google Scholar
  22. 22.
    Lushcheikin, G.A., Metody issledovaniya elektricheskikh svoistv polimerov (Investigation Techniques for Electrical Properties of Polymers), Moscow: Khimiya, 1988.Google Scholar
  23. 23.
    Rychkov, A.A. and Boitsov, V.G., Elektretnyi effekt v strukturakh polimer-metall (Electret Effect in Metal-Polymer Structures), St. Petersburg: RGPU im. A.I. Gertsena, 2000.Google Scholar
  24. 24.
    Blythe, A.R. and Bloor, D., Electrical Properties of Polymers, Cambridge: Cambridge Univ. Press, 2005, 2nd ed.Google Scholar
  25. 25.
    Borsenberger, P.M., Gruenbaum, W.T., O’Regan, M.B., and Rossi, L.J., J. Polym. Sci., Part B: Polym. Phys., 1995, vol. 33, no. 15. p. 2143.CrossRefGoogle Scholar
  26. 26.
    Kittel, C., Introduction to Solid State Physics, New York: Wiley, 1974, 4th ed.Google Scholar
  27. 27.
    Panshin, Yu.A., Malkevich, S.G., and Dunaevskaya, Ts.S., Ftoroplasty (Fluoroplastics), Leningrad: Khimiya, 1978.Google Scholar
  28. 28.
    Rychkov, A.A., Yablokov, M.Yu., Kuznetsov, A.E., Gilman, A.B., and Kuznetsov, A.A., High Energy Chem., 2010, vol. 44, no. 4, p. 347.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. Yu. Yablokov
    • 1
    Email author
  • V. G. Shevchenko
    • 1
  • A. B. Gilman
    • 1
  • A. A. Kuznetsov
    • 1
  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations