Advertisement

High Energy Chemistry

, Volume 48, Issue 4, pp 253–259 | Cite as

Supramolecular assembler based on cucurbit[8]uril: Photodimerization of a styryl dye in water

  • D. A. Ivanov
  • N. Kh. Petrov
  • M. V. Alfimov
  • A. I. Vedernikov
  • S. P. Gromov
Photochemistry

Abstract

Photolysis of aqueous solutions of styryl dye 1 in the presence of cucurbit[8]uril (CB[8]) has been studied by optical spectroscopic methods for the molar ratios n = c CB[8]/c 1 in the range of 0 ≤ n ≤ 6. It has been found that the inclusion complexes (1)2@CB[8] dominate in the solution at n ≤ 0.5, whereas the complexes 1@CB[8] dominate at n ≥ 1. The stability constants have been determined for the 1: 1 (log K 1 = 6.2 (L mol−1)) and 2: 1 (log β = 11.9 (L2 mol−2)) complexes. The fluorescence decay kinetics of dye 1 in the presence of CB[8] is two-exponential, with the average lifetime increasing substantially at n ≥ 1. It has been shown that the system can operate in the cyclic mode as an assembler (or supramolecular catalyst) in the photodimerization reaction of dye 1 to form cyclobutane derivative 2. The stability constant of the complex 2@CB[8] (log K 3 = 5.9 (L mol−1)) and the quantum yield of cycloaddition (⃜ ≈ 0.07 at n ≈ 0.5) have been determined.

Keywords

Photolysis Inclusion Complex Stability Constant High Energy Chemistry Styryl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., and Kim, K., Acc. Chem. Res., 2003, vol. 36, p. 621.CrossRefGoogle Scholar
  2. 2.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., and Lu, X., RSC Adv., 2012, vol. 2, p. 1213.CrossRefGoogle Scholar
  3. 3.
    Dsouza, R.N., Pischel, U., and Nau, W.M., Chem. Rev., 2011, vol. 111, p. 7941.CrossRefGoogle Scholar
  4. 4.
    Petrov, N.Kh., Ivanov, D.A., Golubkov, D.V., Gromov, S.P., and Alfimov, M.V., Chem. Phys. Lett., 2009, vol. 480, p. 96.CrossRefGoogle Scholar
  5. 5.
    Ivanov, D.A., Petrov, N.Kh., Nikitina, E.A., Basilevsky, M.V., Vedernikov, A.I., Gromov, S.P., and Alfimov, M.V., J. Phys. Chem. A, 2011, vol. 115, p. 4505.CrossRefGoogle Scholar
  6. 6.
    Svoboda, J. and Konig, B., Chem. Rev., 2006, vol. 106, p. 5413.CrossRefGoogle Scholar
  7. 7.
    Gromov, S.P., Izv. Akad. Nauk, Ser. Khim., 2008, p. 1299.Google Scholar
  8. 8.
    Gromov, S.P., Obzorn. Zh. Khim., 2011, vol. 1, p. 3.Google Scholar
  9. 9.
    Vedernikov, A.I., Kuz’mina, L.G., Sazonov, S.K., Lobova, N.A., Loginov, P.S., Churakov, A.V., Strelenko, Yu.A., Khovard, Dzh.A.K., Alfimov, M.V., and Gromov, S.P., Izv. Akad. Nauk, Ser. Khim., 2007, p. 1797.Google Scholar
  10. 10.
    Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Yu.A., Alfimov, M.V., and Howard, J.A.K., Eur. J. Org. Chem., 2010, p. 2587.Google Scholar
  11. 11.
    Gans, P., Sabatini, A., and Vacca, A., Talanta, 1996, vol. 43, p. 1739.CrossRefGoogle Scholar
  12. 12.
    Wang, R., Ihmels, H., Yuan, L., and Macartney, D.H., Chem.-Eur. J., 2007, vol. 13, p. 6468.CrossRefGoogle Scholar
  13. 13.
    Bersani, A.M. and Dell’Acqua, G., J. Math. Chem., 2012, vol. 50, p. 335.CrossRefGoogle Scholar
  14. 14.
    Nguyen, A.H. and Fraser, S.J., J. Chem. Phys., 1989, vol. 91, p. 186.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. A. Ivanov
    • 1
  • N. Kh. Petrov
    • 1
    • 2
  • M. V. Alfimov
    • 1
    • 2
  • A. I. Vedernikov
    • 1
  • S. P. Gromov
    • 1
    • 2
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations