High Energy Chemistry

, Volume 48, Issue 2, pp 76–80 | Cite as

Specificity of photonics of 3,3′-diethyl-5,5′-dichloro-9-ethylthiacarbocyanine dimers in the presence of cucurbit[7]uril

  • G. V. Zakharova
  • D. A. Zhizhimov
  • V. G. Avakyan
  • S. K. Sazonov
  • S. P. Gromov
  • A. K. Chibisov


Molecules of 3,3′-diethyl-5,5′-dichloro-9-ethylthiacarbocyanine form dimers in aqueous solutions, which are capable of fluorescence and intersystem crossing to the triplet state. In the presence of cucurbit[7]uril and alkali metals or ammonium cations, dye dimer complexes are formed, which exhibit phosphorescence and thermally activated delayed (E-type) fluorescence in air-saturated solutions at room temperature. With the use of quantum-chemical calculations, the structure of dimeric dye complexes with cucurbit[7]uril is suggested.


Inclusion Complex Triplet State High Energy Chemistry Phosphorescence Spectrum Decay Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Theory of the Photographic Process, James, T.H., Ed., New York: Macmillan, 1977.Google Scholar
  2. 2.
    Bourbon, S., Gao, M.Y., and Kirstein, S., Synth. Met., 1999, vol. 101, nos. 1–3, p. 152.CrossRefGoogle Scholar
  3. 3.
    Mal’tsev, E.I., Lypenko, D.A., Shapiro, B.I., and Vannikov, A.V., Zh. Nauchn. Prikl. Fotogr., 2001, vol. 46, no. 1, p. 13.Google Scholar
  4. 4.
    Scheblykin, I.G., Lepnev, L.S., Vitukhnovsky, A.G., and Van der Auweraer, M., J. Lumin., 2001, vol. 94/95, p. 461.CrossRefGoogle Scholar
  5. 5.
    Sasaki, F. and Kobayashi, S., J. Lumin., 1997, vols. 72–74, p. 538.CrossRefGoogle Scholar
  6. 6.
    Markov, R.V., Plekhanov, A.I., Rautian, S.G., Safonov, V.P., Orlova, N.A., Shelkovnikov, V.V., and Volkov, V.V., Opt. Spektrosk., 1998, vol. 85, no. 4, p. 643.Google Scholar
  7. 7.
    Herz, A.H., Photogr. Sci. Eng., 1974, vol. 18, no. 3, p. 323.Google Scholar
  8. 8.
    Chibisov, A.K., Zakharova, G.V., and Gorner, H., Phys. Chem. Chem. Phys., 2001, vol. 3, no. 1, p. 44.CrossRefGoogle Scholar
  9. 9.
    Chibisov, A.K., Slavnova, T.D., Zakharova, G.V., and Gorner, H., High Energy Chem., 2007, vol. 41, no. 5, p. 344.CrossRefGoogle Scholar
  10. 10.
    Chibisov, A.K., High Energy Chem., 2007, vol. 41, no. 3, p. 200.CrossRefGoogle Scholar
  11. 11.
    Chibisov, A.K. and Zakharova, G.V., Photochem. Photobiol. Sci., 2012, vol. 11, no. 6, p. 893.CrossRefGoogle Scholar
  12. 12.
    Zakharova, G.V. and Chibisov, A.K., High Energy Chem., 2001, vol. 35, no. 6, p. 417.CrossRefGoogle Scholar
  13. 13.
    Atabekyan, L.S., Avakyan, V.G., and Chibisov, A.K., High Energy Chem., 2011, vol. 45, no. 2, p. 123.CrossRefGoogle Scholar
  14. 14.
    Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Y.A., Alfimov, M.V., and Howard, J.A.K., Eur. J. Org. Chem., 2010, no. 13, p. 2587.Google Scholar
  15. 15.
    Maddipatla, M.V.S.N., Kaanumalle, L.S., Natarajan, A., Pattabiraman, M., and Ramamurthy, V., Langmuir, 2007, vol. 23, no. 14, p. 7545.CrossRefGoogle Scholar
  16. 16.
    Slavnova, T.D., Chibisov, A.K., and Gorner, H., J. Phys. Chem. A, 2002, vol. 106, no. 46, p. 10985.CrossRefGoogle Scholar
  17. 17.
    Atabekyan, L.S. and Chibisov, A.K., High Energy Chem., 2007, vol. 41, no. 2, p. 91.CrossRefGoogle Scholar
  18. 18.
    Atabekyan, L.S., Voznyak, D.A., Zakharova, G.V., and Chibisov, A.K., High Energy Chem., 2008, vol. 42, no. 6, p. 454.CrossRefGoogle Scholar
  19. 19.
    Bhasikuttan, A.C., Mohanty, J., Nau, W.M., and Pal, H., Angew. Chem. Int., 2007, vol. 46, no. 22, p. 4120.CrossRefGoogle Scholar
  20. 20.
    Petrov, N.Kh., Ivanov, D.A., Golubkov, D.V., Gromov, S.P., and Alfimov, M.V., Chem. Phys. Lett., 2009, vol. 480, nos. 1?3, p. 96.CrossRefGoogle Scholar
  21. 21.
    Ivanov, D.A., Petrov, N.Kh., Nikitina, E.A., Basilevsky, M.V., Vedernikov, A.V., Gromov, S.P., and Alfimov, M.V., J. Phys. Chem. A, 2011, vol. 115, no. 17, p. 4505.CrossRefGoogle Scholar
  22. 22.
    Nau, W.M. and Koner, A.L., Supramol. Chem., 2007, vol. 19, no. 1/2, p. 55.Google Scholar
  23. 23.
    Wagner, B.D., Stojanovic, N., Day, A.I., and Blanch, R.J., J. Phys. Chem. B, 2003, vol. 107, no. 39, p. 10741.CrossRefGoogle Scholar
  24. 24.
    Parker, C.A., Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry, Amsterdam: Elsevier, 1968.Google Scholar
  25. 25.
    Mu, L., Yang, X.-B., Xue, S.-F., Zhu, Q.-J., Tao, Z., and Zeng, X., Anal. Chim. Acta, 2007, vol. 597, no. 1, p. 90.CrossRefGoogle Scholar
  26. 26.
    Vladimirova, K.G., Freidzon, A.Ya., Bagatur’yants, A.A., Zakharova, G.V., Chibisov, A.K., and Alfimov, M.V., High Energy Chem., 2008, vol. 42, no. 4, p. 275.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • G. V. Zakharova
    • 1
  • D. A. Zhizhimov
    • 1
  • V. G. Avakyan
    • 1
  • S. K. Sazonov
    • 1
  • S. P. Gromov
    • 1
  • A. K. Chibisov
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations