Advertisement

High Energy Chemistry

, Volume 47, Issue 3, pp 98–102 | Cite as

Laser photolysis study of the triplet states of phthalocyanines on the surface of silica nanoparticles in aqueous solutions

  • N. B. Sul’timova
  • P. P. LevinEmail author
  • A. V. Lobanov
  • A. M. Muzafarov
Photochemistry

Abstract

Aluminum and zinc phthalocyanines (AlPc and ZnPc, respectively) adsorbed on the surface of silica nanoparticles (60 nm in diameter) in aqueous solutions have been found to form H-aggregates, which possess characteristic absorption spectra with bands (having a maximum at 640 nm) in a shorter wavelength region with respect to the main Q-band of the monomer (having a maximum at 670 nm). For AlPc on the surface, J-aggregates of two types (long-wavelength bands with maximums at 740 and 770 nm) are also observed. Using nanosecond laser photolysis (with the excitation wavelength of 337 nm) in deoxygenated solutions of AlPc on the surface, the formation of the triplet electronically excited states of J-aggregates has been detected, which are characterized by a broad absorption spectrum in the region of 400–800 nm and a lifetime of 360 μs. No intermediate products have been detected during the photolysis of H-aggregates of ZnPc on the surface.

Keywords

Photolysis Phthalocyanine Triplet State Photodynamic Therapy Electronic Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verle, D., Vendt, A., and Vaitemeer, A., Izv. Akad. Nauk, Ser. Khim., 1994, no. 12, p. 2071.Google Scholar
  2. 2.
    Zhang, X.-F., Xi, Q., and Zhao, J., J. of Materials Chemistry, 2010, vol. 20, p. 6726.CrossRefGoogle Scholar
  3. 3.
    FitzGerald, K., Farren, C., Stanley, C.F., Beeby, A., and Bryce, M.R., Photochem. Photobiol. Sci., 2002, vol. 1, p. 581.CrossRefGoogle Scholar
  4. 4.
    Kameyama, K., Morisue, M., Satake, A., and Kobuke, Y., Angew. Chem., Int. Ed, 2005, vol. 44, p. 4763.CrossRefGoogle Scholar
  5. 5.
    Wurthner, F., Kaiser, T.E., and Saha-Moller, C.R., Angew. Chem., 2011, vol. 50, p. 3376.CrossRefGoogle Scholar
  6. 6.
    Borshch, V.N., Andreeva, E.R., Kuz’min, S.G., and Vozovikov, I.N., Ross. Khim. Zh., 2010, vol. 54, no. 6, p. 78.Google Scholar
  7. 7.
    Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci., 1968, vol. 26, p. 62.CrossRefGoogle Scholar
  8. 8.
    Sul’timova, N.B., Levin, P.P., Chaikovskaya, O.N., and Sokolova, I.V., High Energy Chem., 2008, vol. 42, no. 6, p. 464.CrossRefGoogle Scholar
  9. 9.
    Levin, P.P., Tatikolov, A.S., Panova, I.G., and Sul’timova, N.B., High Energy Chem., 2010, vol. 44, no. 3, p. 216.CrossRefGoogle Scholar
  10. 10.
    Sul’timova, N.B., Levin, P.P., and Chaikovskaya, O.N., High Energy Chem., 2010, vol. 44, no. 5, p. 393.CrossRefGoogle Scholar
  11. 11.
    Levin, P.P., Costa, S.M.B., Ferreira, L.F.V., Lopes, J.M., and Ribeiro, F.R., J. Phys. Chem. B, vol. 101, p. 1355.Google Scholar
  12. 12.
    Levin, P.P. and Costa, S.M.B., Chem. Phys. Lett., 2000, vol. 320, p. 194.CrossRefGoogle Scholar
  13. 13.
    Levin, P.P. and Costa, S.M.B., Chem. Phys., 2001, vol. 263, p. 423.CrossRefGoogle Scholar
  14. 14.
    Khairutdinov, R.F., Levin, P.P., and Costa, S.M.B., Langmuir, 1996, vol. 12, p. 714.CrossRefGoogle Scholar
  15. 15.
    Palewska, K., Sujka, M., Urasinska-Wojcik, B., et al., J. of Photochem. Photobiol. A: Chem., 2008, vol. 197, p. 1.CrossRefGoogle Scholar
  16. 16.
    Li, Y., Pritchett, T.M., Huang, J., et al., J. Phys. Chem. A, 2008, vol. 112, p. 7200.CrossRefGoogle Scholar
  17. 17.
    Achord, J.M. and Hussey, C.L., Anal. Chem., 1980, vol. 52, p. 601.CrossRefGoogle Scholar
  18. 18.
    Grofcsika, A., Baranyaia, P., Bitterc, I., Csokaic, V., Kubinyia, M., Szegletesa, K., Tataia, J., and Vidoczya, T., J. Mol. Struct., 2004, vol. 704, nos. 1–3, p. 11.CrossRefGoogle Scholar
  19. 19.
    Lang, K., Wagnerov, D.M., Engst, P., and Kuba, P., Z. Phys. Chem., 1994, vol. 187, p. 213.CrossRefGoogle Scholar
  20. 20.
    Kameyama, K., Morisue, M., Satake, A., and Kobuke, Y., Angew. Chem., 2005, vol. 117, p. 4841.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. B. Sul’timova
    • 1
  • P. P. Levin
    • 1
    Email author
  • A. V. Lobanov
    • 2
  • A. M. Muzafarov
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations