High Energy Chemistry

, Volume 46, Issue 4, pp 247–252 | Cite as

Femtosecond dynamics of excited-state intramolecular proton transfer in o-tosylaminobenzaldehyde

  • M. N. KhimichEmail author
  • V. A. Nadtochenko
  • L. D. Popov
  • A. S. Burlov
  • V. L. Ivanov
  • N. N. Denisov
  • F. E. Gostev
  • I. V. Shelaev
  • O. M. Sarkisov
  • B. M. Uzhinov


Dynamics of excited-state intramolecular proton transfer (ESIPT) in o-tosylaminobenzaldehyde has been studied by femtosecond absorption spectroscopy with a time resolution of 30 fs. The characteristic time of this process is ∼100 fs. Differential absorption rate curves exhibit oscillations that are consistent with theoretically predicted ESIPT-promoting vibrational modes. Efficient nonradiative deactivation with a rate constant of 6.25 × 1010 s−1 occurs in the excited product of proton transfer, with internal rotation followed by intersystem crossing being one of the feasible deactivation pathways.


Proton Transfer Probe Pulse High Energy Chemistry Excited State Absorption Excite State Intramolecular Proton Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uzhinov, B.M. and Khimich, M.N., Usp. Khim., 2011, vol. 80, p. 580.Google Scholar
  2. 2.
    Parsapour, F. and Kelley, D.F., J. Phys. Chem., 1996, vol. 100, p. 2791.CrossRefGoogle Scholar
  3. 3.
    Sytnik, A. and Kasha, M., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, p. 8627.CrossRefGoogle Scholar
  4. 4.
    Chou, P.T., McMorrow, D., Aartsma, T.J., and Kasha, M., J. Phys. Chem., 1984, vol. 88, p. 4596.CrossRefGoogle Scholar
  5. 5.
    Catalan, J., del Valle, J.C., Claramunt, R.M., Sanz, D., and Dotor, J., J. Lumin., 1996, vol. 68, p. 165.CrossRefGoogle Scholar
  6. 6.
    Roshal, A.D., Grigorovich, A.V., Doroshenko, A.O., and Pivovarenko, V.G., J. Phys. Chem. A, 1998, vol. 102, p. 5907.CrossRefGoogle Scholar
  7. 7.
    Scherl, M., Harrer, D., Fischer, J., DeCian, A., Lehn, J.L., and Eichen, Y., J. Phys. Chem., 1996, vol. 100, p. 16175.CrossRefGoogle Scholar
  8. 8.
    Sytnik, A. and Litvinyuk, I., Proc. Natl. Acad. Sci. USA., 1996, vol. 93, p. 12959.CrossRefGoogle Scholar
  9. 9.
    Mitra, S., Das R., Mukherjee S, J. Phys. Chem. B, 1998, vol. 102, p. 3730.CrossRefGoogle Scholar
  10. 10.
    Klymchenko, A.S., Stoeckel, H., Taneda, K., and Mely, Y., J. Phys. Chem. B, 2006, vol. 110, p. 13624.CrossRefGoogle Scholar
  11. 11.
    Lochbrunner, S., Stock, K., and Riedle, E., J. Mol. Struct., 2004, vol. 700, p. 13.CrossRefGoogle Scholar
  12. 12.
    Neuwahl, F.V.R., Foggi, P., and Brown, R.G., Chem. Phys. Lett., 2000, vol. 319, p. 157.CrossRefGoogle Scholar
  13. 13.
    Khimich, M.N., Gostev, F.E., Shelaev, I.V., Sarkisov, O.M., Birgen, E.A., Bolotin, B.M., and Uzhinov, B.M., High Energy Chem., 2010, vol. 44, p. 482.CrossRefGoogle Scholar
  14. 14.
    Chernova, N.I., Ryabokobylko, Yu.S., Brudz’, V.G., and Bolotin, B.M., Zh. Org. Khim., 1971, vol. 7, p. 1680.Google Scholar
  15. 15.
    Weissberger, A., Proskauer, E.S., Riddick, J.A., and Toops, E.E., Technique of Organic Chemistry, vol. 7: Organic Solvents. Physical Properties and Methods of Purification, New York: Interscience, 1955Google Scholar
  16. 16.
    Melhuish, W.H., J. Phys. Chem., 1961, vol. 65, p. 229.CrossRefGoogle Scholar
  17. 17.
    Shelaev, I.V., Gostev, F.E., Mamedov, M.D., Sarkisov, O.M., Nadtochenko, V.A., Shuvalov, V.A., and Semenov, A.Yu., Biochim. Biophys. Acta, 2010, vol. 1797, p. 1410.CrossRefGoogle Scholar
  18. 18.
    Ushakov, E.N., Nadtochenko, V.A., Gromov, S.P., Vedernikov, A.I., Lobova, N.A., Alfimov, M.V., Gostev, F.E., Petrukhin, A.N., and Sarkisov, O.M., Chem. Phys., 2004, vol. 298, p. 251.CrossRefGoogle Scholar
  19. 19.
    Lochbrunner, S., Wurzer, A.J., and Riedle, E., J. Phys. Chem. A, 2003, vol. 107, p. 10580.CrossRefGoogle Scholar
  20. 20.
    Nemukhin, A.V., Grigorenko, B.L., and Granovskii, A.A., Vestn. Mosk. Univ., Ser 2: Khim., 2004, vol. 45, no. 2, p. 75.Google Scholar
  21. 21.
    Granovsky, A.A., J. Chem. Phys., 2011, vol. 134, p. 214113.CrossRefGoogle Scholar
  22. 22.
    Hsieh, C.C., Cheng, Y.M., Hsu, C.J., Chen, K.Y., and Chou, P.T., J. Phys. Chem. A, 2008, vol. 112, p. 8323.CrossRefGoogle Scholar
  23. 23.
    Khimich, M.N., Birgen, E.A., Bolotin, B.M., Zhadanov, B.V., Uzhinova, L.D., Kuznetsov, A.S., and Uzhinov, B.M., High Energy Chem., 2010, vol. 44, p. 492.CrossRefGoogle Scholar
  24. 24.
    Iijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y., and Arai, T., J. Phys. Chem. A, 2010, vol. 114, p. 1603.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. N. Khimich
    • 1
    Email author
  • V. A. Nadtochenko
    • 2
  • L. D. Popov
    • 3
  • A. S. Burlov
    • 3
  • V. L. Ivanov
    • 1
  • N. N. Denisov
    • 2
  • F. E. Gostev
    • 2
  • I. V. Shelaev
    • 2
  • O. M. Sarkisov
    • 2
  • B. M. Uzhinov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.South Federal UniversityRostov-on-DonRussia

Personalised recommendations