High Energy Chemistry

, Volume 46, Issue 2, pp 117–121 | Cite as

Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation

  • Yu. M. Shul’gaEmail author
  • V. N. Vasilets
  • S. A. Baskakov
  • V. E. Muradyan
  • E. A. Skryleva
  • Yu. N. Parkhomenko


Films of graphite oxide nanosheets have been prepared by deposition from an aqueous alcohol emulsion onto a Teflon FEP substrate. The behavior of the films exposed to monochromatic vacuum UV radiation at a wavelength of 123.6 nm has been studied. It has been found that irradiation decreases the water content and the amount of hydroxyl (OH) groups and increases the concentration of double bonds in the film. At the same time, irradiation does not decrease the amount of C=O groups in the carboxyl and ketone moieties.


Graphite Oxide High Energy Chemistry Vacuum Ultraviolet Graphene Oxide Nanosheets Hydrazine Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Compton, O.C. and Nguyen, S.B.T., Small, 2010, vol. 6, no. 6, p. 711.CrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., and Morozov, S.V., Science, 2004, vol. 306, p. 666.CrossRefGoogle Scholar
  3. 3.
    Novoselov, K.S., Geim, A.K., and Morozov, S.V., Nature, 2005, vol. 438, p. 197.CrossRefGoogle Scholar
  4. 4.
    Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, p. 183.CrossRefGoogle Scholar
  5. 5.
    Wang, X., Zhi, L., and Müllen, K., Nano Lett., 2008, vol. 8, p. 323.CrossRefGoogle Scholar
  6. 6.
    Watcharotone, S., Dikin, D.A., and Stankovich, S., Nano Lett., 2007, vol. 7, p. 1888.CrossRefGoogle Scholar
  7. 7.
    Gomez-Navarro, C., Weitz, R.T., and Bittner, A.M., Nano Lett, 2007, vol. 7, p. 3499.CrossRefGoogle Scholar
  8. 8.
    Stankovich, S., Piner, R.D., and Chen, X., J. Mater. Chem., 2006, vol. 16, p. 155.CrossRefGoogle Scholar
  9. 9.
    Becerril, H.A., Mao, J., Liu, Z., and Stoltenberg, R.M., ACS Nano, 2008, vol. 2, p. 463.CrossRefGoogle Scholar
  10. 10.
    McAllister, M.J., Chem. Mater., 2007, vol. 19, p. 4396.CrossRefGoogle Scholar
  11. 11.
    Stankovich, S., Dikin, D.A., and Piner, R.D., Carbon, 2007, vol. 45, p. 1558.CrossRefGoogle Scholar
  12. 12.
    Gilje, S., Han, S., Wang, M., Wang, K.L., and Kaner, R.B., Nano Lett., 2007, vol. 7, p. 3394.CrossRefGoogle Scholar
  13. 13.
    Eda, G., Fanchini, G., and Chhowalla, M., Nat. Nanotechnol., 2008, vol. 3, p. 270.CrossRefGoogle Scholar
  14. 14.
    Jeong, H.K., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J., and Lee, Y.H., Chem. Phys. Lett., 2009, vol. 470, p. 255.CrossRefGoogle Scholar
  15. 15.
    Williams, G., Seger, B., and Kamat, P.V., ACS Nano, 2008, vol. 2, p. 1487.CrossRefGoogle Scholar
  16. 16.
    Williams, G. and Kamat, P.V., Langmuir, 2009, vol. 25, p. 13869.CrossRefGoogle Scholar
  17. 17.
    Cote, L.J., Cruz-Silva, R., and Huang, J., J. Am. Chem. Soc., 2009, vol. 131, p. 11027.CrossRefGoogle Scholar
  18. 18.
    Shulga, Y.M., Martynenko, V.M., Muradyan, V.E., Smirnov, V.A., and Gutsev, G.L., Chem. Phys. Lett., 2010, vol. 498, p. 287.CrossRefGoogle Scholar
  19. 19.
    Smirnov, V.A., Arbuzov, A.A., Shul’ga, Yu.M., Baskakov, S.A., Martynenko, V.M., Muradyan, V.E., and Kresova, E.I., High Energy Chem., 2011, vol. 45, no. 1, p. 57.CrossRefGoogle Scholar
  20. 20.
    Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.CrossRefGoogle Scholar
  21. 21.
    Muradyan, V.E., Ezerskaya, M.G., Smirnova, V.I., Kabaeva, N.M., Novikov, Yu.N., Parnes, Z.N., and Vol’pin, M.E., Zh. Org. Khim., 1991, vol. 61, no. 12, p. 2626.Google Scholar
  22. 22.
    Yakovlev, S.A., Opt.-Mekh. Prom-st’, 1978, no. 4, p. 52.Google Scholar
  23. 23.
    Vasilets, V.N., Hirata, I., Iwata, H., and Ikada, Y., J. Polym. Sci. Part A: Polym. Chem., 1998, vol. 36, p. 2215.CrossRefGoogle Scholar
  24. 24.
    Vasilets, V.N., Kovalchuk, A.V., and Ponomarev, A.N., J. Photopolym. Sci. Technol., 1994, vol. 7, no. 1, p. 165.CrossRefGoogle Scholar
  25. 25.
    Baidarovtsev, Yu.P., Vasilets, V.N., Dorofeev, Yu.I., Ponomarev, A.N., and Skurat, V.E., Khim. Fiz., 1984, vol. 3, no. 10, p. 1405.Google Scholar
  26. 26.
    Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of XPS, Muilenberg, G.E., Ed., Eden Prairie: Perkin Elmer, 1979.Google Scholar
  27. 27.
    Si, Y. and Samulski, E.T., Nano Lett., 2008, vol. 8, no. 6, p. 1679.CrossRefGoogle Scholar
  28. 28.
    Titelman, G.I., Gelman, V., Bron, S., Khalfin, R.L., Cohen, Y., and Bianco-Peled, H., Carbon, 2005, vol. 43, p. 641.CrossRefGoogle Scholar
  29. 29.
    Stankovich, S., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Carbon, 2006, vol. 44, p. 3342.CrossRefGoogle Scholar
  30. 30.
    Szabo, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., and Dekany, I., Chem. Mater., 2006, vol. 18, p. 2740.CrossRefGoogle Scholar
  31. 31.
    Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., and Tour, J.M., J. Am. Chem. Soc., 2008, vol. 130, p. 16201.CrossRefGoogle Scholar
  32. 32.
    Xu, C., Wang, X., and Zhu, J., J. Phys. Chem., C, 2008, vol. 112, p. 19841.CrossRefGoogle Scholar
  33. 33.
    Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.B.T., and Ruoff, R.S., ACS Nano, 2008, vol. 2, no. 3, p. 572.CrossRefGoogle Scholar
  34. 34.
    Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., and Tascon, J.M.D., Langmuir, 2009, vol. 25, no. 10, p. 5957.CrossRefGoogle Scholar
  35. 35.
    Shan, C., Yang, H., Song, J., Han, D., Ivaska, A., and Niu, L., Anal. Chem., 2009, vol. 81, p. 2378.CrossRefGoogle Scholar
  36. 36.
    Shulga, Y.M., Rubtsov, V.I., and Lobach, A.S., Z. Phys. B: Condens. Matter, 1994, vol. 93, p. 327.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. M. Shul’ga
    • 1
    Email author
  • V. N. Vasilets
    • 2
  • S. A. Baskakov
    • 1
  • V. E. Muradyan
    • 1
  • E. A. Skryleva
    • 3
  • Yu. N. Parkhomenko
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Energy Problems of Chemical Physics, Chernogolovka BranchRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Moscow Institute of Steel and AlloysMoscowRussia

Personalised recommendations