High Energy Chemistry

, Volume 41, Issue 5, pp 370–380 | Cite as

Positronium annihilation data and actual free-volume distribution in polymers

  • V. P. Shantarovich
  • T. Suzuki
  • Yu. P. Yampol’skii
  • P. Budd
  • V. V. Gustov
  • I. B. Kevdina
  • A. V. Pastukhov
  • S. S. Berdonosov
  • V. E. Bozhevol’nov
Chemistry of New Atoms

Abstract

Determination of the size distribution of free-volume holes in solids, in particular, polymers, is an important physicochemical problem. The positron annihilation technique has been proposed for this purpose. The central point in this technique is the quantitative interpretation of data, especially, for substances with a high specific surface area. A developed free-volume system in open-pore membrane materials, such as poly(trimethylsilylpropyne) PTMSP and the spirocyclically bound benzodioxane polymer PIM-1, and polymeric sorbents (hypercrosslinked polystyrenes) makes it possible for the first time to compare the sorption characteristics and positron annihilation data on the character of size distribution of nanopores in these polymers. In combination with the results of mathematical simulation of the structure and radiothermoluminescence measurements, the array of data indicate the structural inhomogeneity of the test amorphous materials. It was shown that this inhomogeneity in relation to the positron annihilation technique is expressed in the insufficiency of the representation of the orthopositronium decay curve by one component that takes into account the Gaussian lifetime distribution (symmetrical pore size distribution) and in the necessity of use of several decay components. The feasibility of revealing a nonrandom character of pore size distribution gives the positron annihilation technique an advantage over other approaches (inverse gas chromatography, 129Xe NMR) to investigation of nanopores in polymers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartenev, G.M. and Lomovskikh, V.A., Vysokomol. Soedin., Ser. A, 2002, vol. 44, no. 8, p. 1331.Google Scholar
  2. 2.
    Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Yu, R.S., Budd, P.M., Yampolskii, Yu.P., Berdonosov, S.S., and Eliseev, A.A., Phys. Status Solidi C (in press).Google Scholar
  3. 3.
    Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Gustov, V.W., Pastukhov, A.V., Sokolova, L.V., Polyakova, A.V., and Belousova, E.V., J. Radioanal. Nucl. Chem., 2007, vol. 272, no. 3, p. 645.CrossRefGoogle Scholar
  4. 4.
    Shantarovich, V.P., Suzuki, T., Ito, Y., Yu, R.S., Kondo, K., Yampolskii, Yu.P., and Alentiev, A.Yu., Radiat. Phys. Chem., 2007, vol. 76, no. 2, p. 134.CrossRefGoogle Scholar
  5. 5.
    Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., New Jersey: World Scientific, 2003.Google Scholar
  6. 6.
    Horvath, G. and Kawazoe, K., J. Chem. Eng. Jpn., 1983, vol. 16, p. 470.Google Scholar
  7. 7.
    Golemme, G., Nagy, G.B., Fonseca, A., Algiery, C., and Yampolskii, Yu., Polymer, 2003, vol. 44, no. 17, p. 5039.CrossRefGoogle Scholar
  8. 8.
    Pastukhov, A.V., Babushkina, T.A., Davankov, V.A., Klimova, T.P., and Shantarovich, V.P., Dokl. Akad. Nauk, 2006, vol. 411, no. 2, p. 216.Google Scholar
  9. 9.
    Hofmann, D., Fritz, L., Schepers, C., and Bohning, M., Macromol. Theory Simul., 2000, vol. 9, p. 293.CrossRefGoogle Scholar
  10. 10.
    Kirkegaard, P., Eldrup, M., Mogensen, O.E., and Pedersen, N., Comput. Phys. Commun, 1981, vol. 23, p. 307.CrossRefGoogle Scholar
  11. 11.
    Dlubek, G. and Eichler, S., Phys. Status Solidi A, 1998, vol. 168, no. 2, p. 333.CrossRefGoogle Scholar
  12. 12.
    Dlubek, G., Hubner, Ch., and Eichler, S., Nucl. Instrum. Methods Phys. Res., 1998, vol. 142, nos. 1–2, p. 191.Google Scholar
  13. 13.
    Mogensen, O.E, in Positron Annihilation in Chemistry, Goldanskii, V.I., Schaefer, F.P., and Toennies, J.P., Eds., Berlin: Springer, 1995.Google Scholar
  14. 14.
    Gregori, R.B. and Zhu, Y., Nucl. Instrum. Methods, A, 1990, vol. 290, nos. 1–2, p. 172.CrossRefGoogle Scholar
  15. 15.
    Shukla, A., Peter, M., and Hofmann, L., Nucl. Instrum. Methods, A, 1993, vol. 335, no. 2, p. 310.CrossRefGoogle Scholar
  16. 16.
    Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Kevdina, I.B., Masuda, T., Khotimskii, V.S., and Yampolskii, Yu.P., Radiat. Phys. Chem., 2000, vol. 58, nos. 5–6, p. 513.CrossRefGoogle Scholar
  17. 17.
    Consolati, G., Genko, J., Pegoraro, M., and Zandorighi, L., J. Polym. Sci.: Part B, 1996, vol. 34, no. 2, p. 357.CrossRefGoogle Scholar
  18. 18.
    Consolati, G., Rurali, R., and Stefanetti, M., Chem. Phys., 1998, vol. 237, no. 3, p. 493.CrossRefGoogle Scholar
  19. 19.
    Budd, P.M., Msayib, K.J., Tattershall, C.S., Ghanem, B.S., Raynolds, K.J., McKeown, N.B., and Fritsch, D., J. Membr. Sci., 2005, vol. 251, nos. 1–2, p. 263.CrossRefGoogle Scholar
  20. 20.
    McKeown, N.B., Budd, P., Msayib, K.J., Ghanem, B.S., Kingston, H.J., Tattershall, C.E., Makhseed, S., Reynolds, K.J., and Fritsch, D., Chem. Eur. J., 2005, vol. 11, p. 2610.CrossRefGoogle Scholar
  21. 21.
    Shantarovich, V.P., Suzuki, T., He, C., Davankov, V.A., Pastukhov, A.V., Tsyurupa, M.P., Kondo, K., and Ito, Y., Macromolecules, 2002, vol. 35, no. 26, p. 9723.CrossRefGoogle Scholar
  22. 22.
    Tsyurupa, M.P., Volynskaya, A.V., Belchich, L.A., and Davankov, V.A., J. Appl. Polym. Sci., 1983, vol. 28, no. 2, p. 685.CrossRefGoogle Scholar
  23. 23.
    Tao, S.J., J. Chem. Phys., 1972, vol. 56, no. 11, p. 5499.CrossRefGoogle Scholar
  24. 24.
    Eldrup, M., Lightbody, D., and Sherwood, J.N., Chem. Phys., 1981, vol. 63, no. 1, p. 51.CrossRefGoogle Scholar
  25. 25.
    Shantarovich, V.P., Suzuki, T., He, C., Kevdina, I.B., Davankov, V.A., Pastukhov, A.V., and Tsyurupa, M.P., Khim. Vys. Energ., 2004, vol. 38, no. 4, p. 310 [High Energy Chem., 2004, vol. 38, no. 4, p. 274].Google Scholar
  26. 26.
    Gregory, R.B., Nucl. Instrum. Methods, A, 1991, vol. 302, no. 3, p. 496.CrossRefGoogle Scholar
  27. 27.
    Dlubek, G., Eichler, S., Hubner, Ch., and Nagel, Ch., Phys. Status Solidi A, 1999, vol. 174, no. 2, p. 313.CrossRefGoogle Scholar
  28. 28.
    Dai, G.H. and Jean, Y.C., Nucl. Instrum. Methods Phys. Res., 1995, vol. B99, nos. 1–4, p. 357.Google Scholar
  29. 29.
    Kansy, J., LT for Windows, Version 9.0 (private communication).Google Scholar
  30. 30.
    Hirayama, Y., Yoshinaga, T., Kusuki, Y., Ninimiya, K., Sakakibara, T., and Tamari, T., J. Membr. Sci., 1996, vol. 111, no. 2, p. 169.CrossRefGoogle Scholar
  31. 31.
    Shantarovich, V.P., Suzuki, T., He, C., Djourelov, N., Kevdina, I.B., Davankov, V.A., Pastukhov, A.V., and Ito, Y., Mater. Sci. Forum, 2004, vol. 346, p. 445.Google Scholar
  32. 32.
    Shantarovich, V.P., Suzuki, T., Djourelov, N., Shimazu, A., Gustov, V.W., and Kevdina, I.B., Acta Phys. Pol., A, 2005, vol. 107, no. 5, p. 629.Google Scholar
  33. 33.
    Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Gustov, V.W., Melikhov, I.V., Berdonosov, S.S., Ivanov, L.N., and Yu, R.S., Radiat. Phys. Chem., 2007, vol. 76, no. 2, p. 257.CrossRefGoogle Scholar
  34. 34.
    Hirata, K., Kobayashi, Y., and Ujihira, Y., J. Chem. Soc., Faraday Trans., 1996, vol. 92, no. 6, p. 985.CrossRefGoogle Scholar
  35. 35.
    McGervey, J.D., Zhibin, Yu., Jamison, A.M., and Simha, R., Positron Annihilation ICPA-10. Mat. Sci. Forum, 1995, vols. 175–178, p. 727.Google Scholar
  36. 36.
    Jean, Y.C., Macromolecules, 1996, vol. 29, no. 17, p. 5756.CrossRefGoogle Scholar
  37. 37.
    Baugher, A.H., Kossler, W.J., and Petzinger, K.G., Macromolecules, 1996, vol. 29, no. 22, p. 7280.CrossRefGoogle Scholar
  38. 38.
    Kansy, J. and Suzuki, T., Radiat. Phys. Chem., 2003, vol. 68, nos. 3–4, p. 497.CrossRefGoogle Scholar
  39. 39.
    Hofmann, D., Heuchel, M., Yampolskii, Yu., Khotimskii, V., and Shantarovich, V., Macromolecules, 2002, vol. 35, no. 6, p. 2129.CrossRefGoogle Scholar
  40. 40.
    Shantarovich, V.P., Kevdina, I.B., and Yampol’skii, Yu.P., Khim. Vys. Energ., 2000, vol. 34, no. 4, p. 309 [High Energy Chem., 2000, vol. 34, no. 4, p. 265].Google Scholar
  41. 41.
    He, C., Suzuki, T., Shantarovich, V.P., Kondo, K., and Ito, Y., Chem. Phys., 2003, vol. 286, nos. 2–3, p. 249.CrossRefGoogle Scholar
  42. 42.
    Goworek, T., Ciesielski, K., Jasinska, B., and Wawryszczuk, J., Chem. Phys., 1998, vol. 230, nos. 2–3, p. 305.CrossRefGoogle Scholar
  43. 43.
    Jasinska, B., Koziel, A.E., and Goworek, T., J. Radioanal. Nucl. Chem., 1996, vol. 210, no. 3, p. 617.Google Scholar
  44. 44.
    Dlubek, G., Bondarenko, V., Piontek, J., Supej, M., Wutzler, A., and Krauze-Rehberg, R., Polymer, 2003, vol. 44, no. 6, p. 1921.CrossRefGoogle Scholar
  45. 45.
    Angel, K.A., Water in Polymers, Rowland, S.P., Ed., Washington D.C.: American Chemical Society, 1980.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. P. Shantarovich
    • 1
  • T. Suzuki
    • 2
  • Yu. P. Yampol’skii
    • 3
  • P. Budd
    • 4
  • V. V. Gustov
    • 1
  • I. B. Kevdina
    • 1
  • A. V. Pastukhov
    • 5
  • S. S. Berdonosov
    • 6
  • V. E. Bozhevol’nov
    • 6
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.High Energy Accelerator Research Organization (KEK)Tsukuba, IbarakiJapan
  3. 3.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  4. 4.School of ChemistryUniversity of ManchesterManchesterUK
  5. 5.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  6. 6.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations