High Energy Chemistry

, Volume 40, Issue 3, pp 131–141

Photopolymerizable recording media for three-dimensional holographic optical memory

  • V. A. Barachevskii
Review

Abstract

The development of investigations in recent years on photopolymerizable recording holographic media for using as photosensitive layers of holographic optical disks, which satisfy the conditions for the application in archive optical memory is analyzed. It is shown that the main emphasis in the development of photopolymerizable holographic recording media is put on the improvement of their component composition. Formulations that permit joint radical and cationic photopolymerization were designed for thermally stable holographic recording. The holographic characteristics achieved for these media ensure the fabrication of single-layer optical disks 150 mm in diameter with the information capacity of 200 GB instead of 5 GB for modern optical disks. Ways of improving photopolymerizable holographic recording media for the manufacture of optical disks with an information capacity of more than 1 Tb cm−3 are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Day, D. and Gu, M., Top. Appl. Phys., 2002, vol. 86, p. 1.CrossRefGoogle Scholar
  2. 2.
    Barachevskii, V.A., Khim. Vys. Energ., 2003, vol. 37, no. 1, p. 8 [High Energy Chem., 2003, vol. 37, no. 1, p. 6].Google Scholar
  3. 3.
    Orlov, S.S., Phillips, W., Bjornson, E., et al., Appl. Opt., 2004, vol. 43, no. 25, p. 4902.CrossRefGoogle Scholar
  4. 4.
    Jenkins, D., Clegg, W., Windmill, J., et al., Microsyst. Technol. Micro-Nanosyst. Inf. Storage Process. Syst., 2003, vol. 10, no. 1, p. 66.Google Scholar
  5. 5.
    Parthenopoulos, D.A. and Rentzepis, P.M., Science, 1989, vol. 245, p. 843.Google Scholar
  6. 6.
    Hunter, S., Solomon, C., Esner, S., et al., Opt. Mem. Neur. Network, 1994, vol. 3, p. 151.Google Scholar
  7. 7.
    Tsujioka, T., Mol. Cryst. Liq. Cryst., 2000, vol. 344, p. 51.Google Scholar
  8. 8.
    Hesselink, L.H., Orlov, S.S., and Bashaw, M.C., Proc. IEEE, 2004, vol. 92, no. 8, p. 1231.CrossRefGoogle Scholar
  9. 9.
    McLeod, R.R., Daiber, A.J., McDonald, M.E., et al., Appl. Opt., 2005, vol. 44, no. 16, p. 3197.CrossRefGoogle Scholar
  10. 10.
    Sponsler, M.B., The Spectrum, 2000, vol. 13, p. 1.Google Scholar
  11. 11.
    Shelby, R.M., Waldman, D.A., and Ingwall, R.T., Opt. Lett., 2000, vol. 25, no. 10, p. 713.Google Scholar
  12. 12.
    Collier, R., Burckhardt, C., and Lin, L., Optical Holography, New York: Academic, 1971.Google Scholar
  13. 13.
    Vol’kenshtein, M.V., Stroenie i fizicheskie svoistva molekul (The Structure and Physical Properties of Molecules), Moscow, Leningrad: Akad. Nauk SSSR, 1955.Google Scholar
  14. 14.
    Zhao, G. and Mouraeles, P., J. Mod. Opt., 1999, vol. 41, p. 1929.Google Scholar
  15. 15.
    Wu, S.D. and Glytsis, E.N., J. Opt. Soc. Am. B: Opt. Phys., 2003, vol. 20, no. 6, p. 1177.Google Scholar
  16. 16.
    Decker, C., Opt. Mem. Neur. Network, 2001, vol. 10, p. 125.Google Scholar
  17. 17.
    Fouassier, J.-P. and Morlet-Savary, F., Opt. Eng., 1996, vol. 35, no. 1, p. 304.CrossRefGoogle Scholar
  18. 18.
    Fouassier, J.-P. and Morlet-Savary, F., Opt. Mem. Neur. Network, 1995, vol. 4, p. 11.Google Scholar
  19. 19.
    Grotzinger, C., Burget, D., Jacque, P., et al., Polymer, 2003, vol. 44, p. 3671.CrossRefGoogle Scholar
  20. 20.
    Burget, D., Mallein, C., and Fouassier, J.-P., Polymer, 2003, vol. 44, p. 7671.CrossRefGoogle Scholar
  21. 21.
    Mallavia, R., Fimia, A., Garcia, C., et al., J. Mod. Opt., 2001, vol. 48, no. 6, p. 941.CrossRefGoogle Scholar
  22. 22.
    Kim, D. and Scranton, A., J. Polym. Sci., Part A: Polym. Chem., 2004, vol. 42, no. 23, p. 5863.CrossRefGoogle Scholar
  23. 23.
    Suzuki, S., Emilie, P., Urano, T., et al., Polymer, 2005, vol. 46, no. 7, p. 2238.CrossRefGoogle Scholar
  24. 24.
    Marotz, J., Appl. Phys., 1985, vol. 1337, p. 181.Google Scholar
  25. 25.
    Luckemeyer, T. and Franke, H., Appl. Phys., 1988, vol. 13, p. 25.Google Scholar
  26. 26.
    Lin, S.H., Hsu, K.Y., and Chen, W.Z., Opt. Lett., 2000, vol. 25, no. 7, p. 451.Google Scholar
  27. 27.
    Hsu, K.Y., Lin, S.H., Hsia, Y.N., et al., Opt. Eng., 2003, vol. 42, no. 5, p. 1390.CrossRefGoogle Scholar
  28. 28.
    Hsiao, Y.N., Whang, W.T., Lin, S.H., et al., Opt. Eng., 2004, vol. 43, no. 9, p. 1993.CrossRefGoogle Scholar
  29. 29.
    Hsiao, Y.N., Whang, W.T., Lin, S.H., et al., Jpn. J. Appl. Phys., Part I, 2005, vol. 44, no. 2, p. 914.CrossRefGoogle Scholar
  30. 30.
    Jeudy, M.J. and Robillard, R., Opt. Commun., 1975, vol. 13, p. 25.CrossRefGoogle Scholar
  31. 31.
    Lee, S.-K. and Neckers, D.C., Chem. Mater., 1991, vol. 3, p. 858.CrossRefGoogle Scholar
  32. 32.
    Lee, S.-K. and Neckers, D.C., Chem. Mater., 1991, vol. 3, p. 852.CrossRefGoogle Scholar
  33. 33.
    Barachevsky, V.A., Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4149, p. 205.Google Scholar
  34. 34.
    Shelkovnikov, V.V., Pen, E.F., Kovalevskii, V.I., et al., Opt. Spectrosc., 2004, vol. 97, no. 6, p. 970.CrossRefGoogle Scholar
  35. 35.
    Kirkpatrick, S.-M., Baur, J.W., Clark, C.M., et al., Appl. Phys. A, 1999, vol. 69, no. 4, p. 461.CrossRefGoogle Scholar
  36. 36.
    Diamand, C., Doiko, Y., and Esener, S., Opt. Express, 2000, vol. 6, no. 3, p. 64.CrossRefGoogle Scholar
  37. 37.
    Cumpston, B.H., Perry, J.W., Marder, S., et al., Mater. Res. Soc. Symp. Proc., 1998, vol. 488, p. 217.Google Scholar
  38. 38.
    Cumpston, B.H., Anonthavel, S.P., Barlov, S., et al., Nature, 1999, vol. 398, p. 51.CrossRefGoogle Scholar
  39. 39.
    Yan, Y.X., Tao, X.T., Sun, Y.H., et al., Bull. Chem. Soc. Jpn., 2005, vol. 78, no. 2, p. 300.CrossRefGoogle Scholar
  40. 40.
    Toba, Y., J. Photopolym. Sci. Technol., 2003, vol. 16, no. 1, p. 115.CrossRefGoogle Scholar
  41. 41.
    Davidenko, N.A., Derevyanko, I.A., Ishchenko, A.A., et al., Zh. Nauchn. Prikl. Fotogr., 2002, vol. 47, no. 6, p. 29.Google Scholar
  42. 42.
    Degirmenci, M., Onen, A., Yagci, Y., et al., Polym. Bull., 2001, vol. 46, no. 6, p. 443.CrossRefGoogle Scholar
  43. 43.
    Lougnot, D.J., Turck, C., Garel, L., et al., Proc. SPIE, 1998, vol. 3417, p. 165.CrossRefGoogle Scholar
  44. 44.
    Monroe, B.M., Smothers, W.K., Keys, D.E., et al., J. Image Sci., 1991, vol. 35, no. 1, p. 19.Google Scholar
  45. 45.
    Tomlinson, W.J., Chandross, E.A., Weber, H., et al., Appl. Opt., 1976, vol. 15, no. 2, p. 534.CrossRefGoogle Scholar
  46. 46.
    Tomlinson, W.J. and Chandross, E.A., Adv. Photochem., 1980, vol. 12, p. 202.Google Scholar
  47. 47.
    Blaya, S., Acebal, P., and Carretero, L., Opt. Commun., 2003, vol. 228, p. 55.CrossRefGoogle Scholar
  48. 48.
    Kim, W.S., Chang, H.S., Jeong, Y.C., et al., Opt. Commun., 2005, vol. 249, nos. 1–3, p. 65.CrossRefGoogle Scholar
  49. 49.
    Zhou, C., Wang, D., Tao, S., et al., Proc. SPIE-Int. Soc. Opt. Eng., 2002, vol. 4930, p. 443.Google Scholar
  50. 50.
    Yoon, H., Choi, D.H., Cho, M.J., et al., J Nonlin. Opt. Phys. Mater., 2004, vol. 13, nos. 3–4, p. 569.CrossRefGoogle Scholar
  51. 51.
    Yoon, H., Yoon, H., Paek, S.H., et al., Mol. Cryst. Liq. Cryst., 2004, vol. 425, p. 415.CrossRefGoogle Scholar
  52. 52.
    Yoon H., Yoon H., and Paek S.H. Opt. Mater., 2005, vol. 27, no. 6, p. 1190.CrossRefGoogle Scholar
  53. 53.
    Sarbaev, T.A., Smirnova, T.N., and Tikhonov, E.A., Kvantovaya Elektron., 1994, vol. 21, no. 2, p. 373.Google Scholar
  54. 54.
    Smirnova, T.N. and Sakhno, O.V., Proc. SPIE, 1998, vol. 3488, p. 276.CrossRefGoogle Scholar
  55. 55.
    Sutherland, R.L., Natarajan, L.V., Tondiglia, V.P., et al., Chem. Mater., 1993, vol. 5, p. 533.CrossRefGoogle Scholar
  56. 56.
    Bobrovskii, A.Yu., Boikov, N.I., and Shibaev, V.P., Vysokomol. Soedin., Ser. A, 2000, vol. 42, no. 1, p. 50.Google Scholar
  57. 57.
    Hayle, C.E., Whitehead, J., Kang, D., et al., Proc. ICPS, 1994, p. 788.Google Scholar
  58. 58.
    Suzuki, A., Tomita, Y., and Kojiwa, T., Appl. Phys. Lett., 2002, vol. 81, p. 4121.CrossRefGoogle Scholar
  59. 59.
    Suzuki, A. and Tomita, Y., Jpn. J. Phys., 2003, vol. 8A, p. L927.CrossRefGoogle Scholar
  60. 60.
    Tomita, Y. and Shibiraki, H.N., Appl. Phys. Lett., 2003, vol. 83, no. 3, p. 410.CrossRefGoogle Scholar
  61. 61.
    Kim, W.S., Jeong, Y.C., and Park, J.K., Appl. Phys. Lett., 2005, vol. 87, no. 1, P. Art. N 012106.Google Scholar
  62. 62.
    Park, J. and Kim, E., Eng. Mater., 2005, vols. 277–279, p. 1039.Google Scholar
  63. 63.
    Kim, H.S., Kyong, C.S., Sung, G.Y., et al., J. Ind. Eng. Chem., 1999, vol. 5, no. 1, p. 65.Google Scholar
  64. 64.
    Carretero, L., Blaya, S., Mallavia, R., et al., Holography, 1998, January, p. 2.Google Scholar
  65. 65.
    Blaya, S., Carretero, L., Madrigal, R.F., et al., Appl. Phys. B, 2002, vol. 74, no. 3, p. 243.CrossRefGoogle Scholar
  66. 66.
    Blaya, S., Carretero, L., Madrigal, R.F., et al., Appl. Phys. B, 2002, vol. 74, no. 6, p. 603.CrossRefGoogle Scholar
  67. 67.
    Blaya, S., Carretero, L., Madrigal, R.F., et al., Opt. Mater., 2003, vol. 23, nos. 3–4, p. 529.CrossRefGoogle Scholar
  68. 68.
    Garcia, C., Pascual, I., Costela, A., et al., Appl. Opt., 2002, vol. 41, no. 14, p. 2613.Google Scholar
  69. 69.
    Gallego, S., Ortuno, M., Garcia, C., et al., J. Mod. Opt., 2005, vol. 52, no. 11, p. 1575.CrossRefGoogle Scholar
  70. 70.
    Blaya, S., Carretero, L., Madrigal, R.F., et al., Jpn. J. Appl. Phys., Part 1, 2002, vol. 41, no. 6A, p. 3730.CrossRefGoogle Scholar
  71. 71.
    Gallego, S., Neip, C., Ortuno, M., et al., Appl. Opt., 2003, vol. 42, no. 29, p. 5839.Google Scholar
  72. 72.
    Gallego, S., Ortuno, M., Neip, C., et al., Opt. Express, 2003, vol. 11, no. 2, p. 181.Google Scholar
  73. 73.
    Huang, M., Yao, H., Chen, Z., et al., Proc. SPIE-Int. Soc. Opt. Eng., 2003, vol. 5060, p. 191.Google Scholar
  74. 74.
    Yao, H.W., Huang, M.J., Chen, Z., et al., Mater. Lett., 2002, vol. 56, nos. 1–2, p. 3.CrossRefGoogle Scholar
  75. 75.
    Yao, H.W., Huang, M.J., Chen, Z., et al., Proc. SPIE-Int. Soc. Opt. Eng., 2003, vol. 5060, p. 191.Google Scholar
  76. 76.
    Choi, D.H., Feng, D.J., Yoon, H., et al., Macromol. Res., 2003, vol. 11, no. 1, p. 36.Google Scholar
  77. 77.
    Sazonov, Yu.A., Shelkovnikov, V.V., Pen, E.F., et al., Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4149, p. 100.Google Scholar
  78. 78.
    Kou, H.G., Shi, W.F., Tang, L., et al., Appl. Opt., 2003, vol. 42, no. 19, p. 3944.Google Scholar
  79. 79.
    Kou, H.G., Shi, W.F., Lougnot, D.J., et al., Polym. Adv. Technol., 2004, vol. 15, no. 9, p. 508.CrossRefGoogle Scholar
  80. 80.
    Kamanina, N.V., Voronin, V.M., Varnaev, A.V., et al., Synth. Met., 2003, vol. 138, nos. 1–2, p. 317.CrossRefGoogle Scholar
  81. 81.
    Shelkovnikov, V.V., Russkikh, V.V., Vasil’ev, E.V., et al., Zh. Prikl. Spektrosk., 2005, vol. 72, no. 4, p. 551.Google Scholar
  82. 82.
    Lawrence, J.R., O’Neil, F.T., and Sheridan, J.T., Optik., 2001, vol. 112–10, p. 449.Google Scholar
  83. 83.
    Ortuno, M., Gallego, S., Garcia, C., et al., Appl. Phys. B, 2003, vol. 76, no. 8, p. 851.CrossRefGoogle Scholar
  84. 84.
    Ortuno, M., Gallego, S., Garcia, C., et al., Appl. Opt., 2003, vol. 42, no. 35, p. 7008.Google Scholar
  85. 85.
    Ortuno, M., Gallego, S., Garcia, C., et al., Appl. Opt., 2005, vol. 44, no. 8, p. 1448.CrossRefGoogle Scholar
  86. 86.
    Herlocher, J.A., Fuentes-Hernandez, C., Wang, J.E., et al., Opt. Lett., 2002, vol. 80, no. 7, p. 1156.Google Scholar
  87. 87.
    Garcia, C., Fimia, A., and Pascual, I., Appl. Phys. B, 2001, vol. 72, p. 311.Google Scholar
  88. 88.
    Zikler, S.J., Chem. Phys. Chem., 2002, vol. 3, no. 4, p. 333.Google Scholar
  89. 89.
    Choi, D.H., Cho, M.J., Yoon, Y., et al., Opt. Mater., 2004, vol. 27, no. 1, p. 85.CrossRefGoogle Scholar
  90. 90.
    Ramos, G., Alvarez-Herrero, A., Belenguer, T., et al., Proc. SPIE-Int. Soc. Opt. Eng., 2003, vol. 5216, p. 116.Google Scholar
  91. 91.
    Carretero, L., Murciano, A., Blaya, S., et al., Opt. Express, 2004, vol. 12, no. 8, p. 1780.CrossRefGoogle Scholar
  92. 92.
    Sherif, H., Naydenova, I., Martin, S., et al., J. Optics. A, 2005, vol. 75, no. 5, p. 255.Google Scholar
  93. 93.
    Sainov, S., Ecoffet, C., and Lougnot, D.J., J. Optics, 2003, vol. 5, no. 2, p. 142.Google Scholar
  94. 94.
    O’Neill, F.T., Lawrence, J.R., and Sheridan, J.T., Opt. Eng., 2001, vol. 40, no. 4, p. 533.CrossRefGoogle Scholar
  95. 95.
    Gallego, S., Ortuno, M., Neipp, C., et al., Opt. Express, 2005, vol. 13, no. 9, p. 3543.CrossRefGoogle Scholar
  96. 96.
    Gallego, S., Ortuno, M., Neipp, C., et al., Opt. Express, 2005, vol. 13, no. 6, p. 1939.CrossRefGoogle Scholar
  97. 97.
    Neipp, C., Gallego, S., Ortuno, M., et al., Opt. Commun., 2003, vol. 224, no. 6, p. 27.CrossRefGoogle Scholar
  98. 98.
    Neipp, C., Belendez, A., Sheridan, J.T., et al., Opt. Express, 2003, vol. 11, no. 16, p. 1876.CrossRefGoogle Scholar
  99. 99.
    Blaya, S., Carretero, L., Madrigal, R.F., et al., 2003, vol. 77, nos. 6–7, p. 639.Google Scholar
  100. 100.
    Sheridan, J.T., Downey, M., and O’Neill, F.T., J. Opt. Soc. Am. Pure Appl. Opt., 2001, vol. 3, p. 477.CrossRefGoogle Scholar
  101. 101.
    Lawrence, J.R., O’Neill, F.T., and Sheridan, J.T., J. Appl. Phys., 2001, vol. 90, no. 7, p. 3142.CrossRefGoogle Scholar
  102. 102.
    Sheridan, J.T., O’Neill, F.T., and Kelly, J.V., J. Opt. Soc. Am., 2004, vol. 21, no. 8, p. 1443.CrossRefGoogle Scholar
  103. 103.
    Menetrier, L. and Burr, G.W., Appl. Opt., 2003, vol. 42, no. 5, p. 845.Google Scholar
  104. 104.
    Kelly, J.V., O’Neill, F.T., Neipp, C., et al., J. Opt. Soc. Am., 2005, vol. 22, no. 2, p. 407.CrossRefGoogle Scholar
  105. 105.
    Blaya, S., Carretero, L., Madrigal, R.F., et al., Opt. Commun., 2000, vol. 173, nos. 1–6, p. 423.CrossRefGoogle Scholar
  106. 106.
    Monroe, B.M and Smothers, W.K, in Polymer for Lightwave and Integrated Optics: Technology and Application, Hornak, L.A., Ed., New York: Marcel Dekker, 1992.Google Scholar
  107. 107.
    Liu, G., He, Q., Jin, H., et al., Proc. SPIE-Int. Soc. Opt. Eng., 2002, vol. 4930, p. 88.Google Scholar
  108. 108.
    Ohe, Y., Ito, H., Watanabe, N., et al., J. Appl. Polym. Sci., 2000, vol. 77, no. 10, p. 2189.CrossRefGoogle Scholar
  109. 109.
    Duarte-Quiroga, R.A., Calieto, S., and Lougnot, D.J., Appl. Opt., 2003, vol. 42, no. 8, p. 1417.Google Scholar
  110. 110.
    Cho, Y.H., He, M., Kim, B.K., et al., Sci. Technol. Adv. Mater., 2004, vol. 5, no. 3, p. 319.CrossRefGoogle Scholar
  111. 111.
    Smothers, W.K., Monroe, B.M., Weber, A.M., et al., Proc. SPIE-Int. Soc. Opt. Eng., 1990, vol. 1212, p. 20.Google Scholar
  112. 112.
    Diez, S., Elsner, R., Madonald, R., et al., in Scientific. Technology Polymer Advances Materials, Prasad, P.N., Ed., New York: Plenum, 1998.Google Scholar
  113. 113.
    Ingwall, R.T. and Troll, M., Opt. Eng., 1989, vol. 28, p. 586.Google Scholar
  114. 114.
    Troll, M. and Formosa, J., Proc. SPIE-Int. Soc. Opt. Eng., 1989, vol. 1051, p. 90.Google Scholar
  115. 115.
    Butler, J.J., Rodriques, M.A., Malcuit, M.S., et al., Opt. Commun., 1998, vol. 155, p. 23.CrossRefGoogle Scholar
  116. 116.
    Waldam, D.A., Butler, C.J., and Raguin, D.H., Proc. SPIE-Int. Soc. Opt. Eng., 2003, vol. 5216, p. 10.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Barachevskii
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations