Advertisement

Geotectonics

, Volume 52, Issue 6, pp 634–646 | Cite as

Constraining Age of Deformation Stages in the South-Western Part of Verkhoyansk Fold-and-Thrust Belt by Apatite and Zircon Fission-Track Analysis

  • S. V. MalyshevEmail author
  • A. K. Khudoley
  • U. A. Glasmacher
  • G. G. Kazakova
  • M. A. Kalinin
Article
  • 18 Downloads

Abstract—Zircon fission track analysis was carried out for Mesoproterozoic to Lower Paleozoic sedimentary rocks of the South-Verkhoyansk sector of the Verkhoyansk fold-and-thrust belt. The age of thrusting stages was constrained in this region. The early stage of deformations dated as 160 Ma, the main stage dated as from 70 to 90 Ma. Thermal history modeling on apatite allowed us to establish the youngest stage of erosion from 20 to 30 Ma, which indirectly indicates the reactivation of tectonic processes in the region at the boundary of Paleogene and Neogene. The degree of heating of the rocks increases in the east direction, and if in the frontal zone the fission tracks were annealed only in apatite, then in the Sette-Daban zone fission tracks were annealed both in apatite and in zircon.

Keywords:

Riphean Paleozoic fission-track analysis thermal modelling deformations stages South-Verkhoyansk sector Kyllakh and Sette-Daban zones 

Notes

ACKNOWLEDGMENTS

The work was supported by a Grant of the President of the Russian Federation (MK-739.2017.5), Scientific Research Program, St. Petersburg State University (3.57.1179.2016; 3.42.979.2016).

REFERENCES

  1. 1.
    S. V. Malyshev, A. K. Khudolei, U. A. Glasmakher, and A. V. Shatsillo, “Results of fission track dating of detrital apatites (AFT) from sandstones of the Kyllakh zone, South Verkhoyansk region,” in Tectonics, Geodynamics, and Ore Genesis of Fold Belts and Platforms: Proceedings of the XLVIII Meeting on Tectonics (GEOS, Moscow, 2016), Vol. 1, pp. 355–357.Google Scholar
  2. 2.
    S. V. Malyshev, A. K. Khudoley, A. V. Prokopiev, V. B. Ershova, G. G. Kazakova, and L. B. Terentyeva, “Source rocks of Carboniferous–Lower Cretaceous terrigenous sediments of the northeastern Siberian Platform: Results of Sm–Nd isotope-geochemical studies,” Russ. Geol. Geophys. 57, 421–433 (2016).CrossRefGoogle Scholar
  3. 3.
    L. M. Parfenov, Continental Margins and Island Arcs of Mesozoides in Northeast Asia (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  4. 4.
    L. M. Parfenov, A. V. Prokop’ev, and V. B. Spektor, “Relief of the Earth’s surface and its evolution,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 12–32.Google Scholar
  5. 5.
    V. N. Podkovyrov, L. N. Kotova, A. B. Kotov, V. P. Kovach, O. V. Graunov, and N. Yu. Zagornaya, “Provenance and source rocks of Riphean sandstones in the Uchur–Maya region (East Siberia): Implications of geochemical data and Sm–Nd isotopic systematics,” Stratigr. Geol. Correl. 15, 41–56 (2007).CrossRefGoogle Scholar
  6. 6.
    A. V. Prokop’ev, Kinematics of the Mesozoic Folding in the Western Part of South Verkhoyansk Region (Yakutsk. Nauchn. Tsentr Sib. Otd. Akad. Nauk SSSR, Yakutsk, 1989) [in Russian].Google Scholar
  7. 7.
    A. V. Prokop’ev, L. M. Parfenov, M. D. Tomshin, and I. I. Kolodeznikov, “Sedimentary cover of the Siberian Platform and adjacent fold-and-thrust belts,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 113–155.Google Scholar
  8. 8.
    A. V. Prokop’ev and A. V. Deikunenko, “Deformation structures of fold-and-thrust belts,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 156–198.Google Scholar
  9. 9.
    A. V. Prokop’ev, H. Toro, T. A. Dumitru, E. L. Miller, and D. K. Khourigan, “Formation history of thrust structures in South Verkhoyansk region (Eastern Yakutia) on the basis of fission track dating method (AFTA),” in Evolution of Tectonic Processes in the Earth’s History: Proceedings of the XXXVII Meeting on Tectonics (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004), Vol. 2, pp. 86–88.Google Scholar
  10. 10.
    M. A. Semikhatov and S. N. Serebryakov, Siberian Hypostratotype of the Riphean (Nauka, Moscow, 1983) [in Russian].Google Scholar
  11. 11.
    S. D. Sokolov, “Tectonics of Northeast Asia: An overview,” Geotectonics 44, 493–509 (2010).CrossRefGoogle Scholar
  12. 12.
    A. V. Solov’ev, Studies of Tectonic Processes in Convergence Zones of Lithospheric Plates: Methods of Fission Track and Structural Analysis, Vol. 577 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 2008) [in Russian].Google Scholar
  13. 13.
    A. I. Starnikov, N. N. Pushkar’, G. A. Chernobrovkina, V. S. Grinenko, E. L. Mozalevskii, and L. N. Kovalyov, Geological Map of Yakutia (South Verkhoyansk Block), Scale 1 : 500 000 (VSEGEI, St. Petersburg, 1995).Google Scholar
  14. 14.
    A. K. Khudolei, G. A. Gur’ev, and E. A. Zubareva, “Deposits of density flows in the Sette-Daban carbonate complex, South Verkhoyansk region,” Litol. Polezn. Iskop., No. 5, 106–116 (1991).Google Scholar
  15. 15.
    V. A. Yan-Zhin-Shin, Tectonics of the Sette-Daban Horst–Anticlinorium (Yakutsk. Fil. Sib. Otd. Akad. Nauk SSSR, Yakutsk, 1983) [in Russian].Google Scholar
  16. 16.
    O. V. Yapaskurt, Lithogenesis and Mineral Resources of Miogeosynclines (Nedra, Moscow, 1992) [in Russian].Google Scholar
  17. 17.
    B. Andreucci, A. Castelluccio, S. Corrado, L. Jankowski, S. Mazzoli, R. Szaniawski, and M. Zattin, “Interplay between the thermal evolution of an orogenic wedge and its retro-wedge basin: An example from the Ukrainian Carpathians,” Geol. Soc. Am. Bull. 127, 410–427 (2015).CrossRefGoogle Scholar
  18. 18.
    F. Bellemans, F. De Corte, and P. Van Den Haute, “Composition of SRM and CN U-doped glasses: Significance for their use as thermal neutron fluence monitors in fission track dating,” Radiat. Meas. 24, 153–160 (1995).CrossRefGoogle Scholar
  19. 19.
    A. Eude, M. Roddaz, S. Brichau, S. Brusset, Y. Calderon, P. Baby, and J. C. Soula, “Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section,” Tectonics 34, 715–730 (2015).CrossRefGoogle Scholar
  20. 20.
    I. Dunkl, “Trackkey: A Windows program for calculation and graphical presentation of fission track data,” Comput. Geosci. 28, 3–12 (2002).CrossRefGoogle Scholar
  21. 21.
    R. L. Fleisher, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids (Univ. California Press, Berkeley, 1975).Google Scholar
  22. 22.
    R. F. Galbraith, “The radial plot: Graphical assessment of spread in ages,” Nucl. Tracks Radiat. Meas. 17, 207–214 (1990).CrossRefGoogle Scholar
  23. 23.
    R. F. Galbraith and G. M. Laslett, “Statistical models for mixed fission track ages,” Nucl. Tracks Radiat. Meas. 21, 459–470 (1993).CrossRefGoogle Scholar
  24. 24.
    J. I. Garver, “Fission-track dating,” in Encyclopedia of Paleoclimatology and Ancient Environments, Ed. by V. Gornitz (Springer, Dordrecht, 2009), pp. 247–249.Google Scholar
  25. 25.
    A. J. W. Gleadow, “Fission track dating methods,” The 3rd School of Earth Sciences, Melbourne, Australia, 2007 (Univ. Melbourne, Melbourne, 2007), p. 74.Google Scholar
  26. 26.
    A. J. W. Gleadow and I. R. Duddy, “A natural long-term track annealing experiment for apatite,” Nucl. Tracks 5, 169–174 (1981).CrossRefGoogle Scholar
  27. 27.
    A. J. W. Gleadow, I. R. Duddy, P. F. Green, and J. F. Lovering, “Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis,” Contrib. Mineral. Petrol. 94, 405–415 (1986).CrossRefGoogle Scholar
  28. 28.
    A. J. Hurford and P. F. Green, “The zeta age calibration of fission track dating,” Chem. Geol. 1, 285–317 (1983).CrossRefGoogle Scholar
  29. 29.
    R. A. Ketcham, “Forward and inverse modeling of low-temperature thermochronometry data,” Rev. Mineral. Geochem. 58, 275–314 (2005).CrossRefGoogle Scholar
  30. 30.
    A. K. Khudoley, R. H. Rainbird, R. A. Stern, A. P. Kropachev, L. M. Heaman, A. M. Zanin, V. N. Podkovyrov, V. N. Belova, and V. I. Sukhorukov, “Sedimentary evolution of the Riphean–Vendian basin of southeastern Siberia,” Precambrian Res. 111, 129–163 (2001).CrossRefGoogle Scholar
  31. 31.
    A. K. Khudoley and G. A. Guriev, “Influence of syn–sedimentary faults on orogenic structure: examples from the Neoproterozoic–Mesozoic east Siberian passive margin,” Tectonophysics 365, 23–43 (2003).CrossRefGoogle Scholar
  32. 32.
    A. K. Khudoley and A. V. Prokopiev, “Defining the eastern boundary of the North Asian craton from structural and subsidence history studies of the Verkhoyansk fold-and-thrust belt,” in Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price,Vol. 433 of Geol. Soc. Am., Spec. Pap., Ed. by J. W. Sears, T. A. Harms, and C. A. Evenchick (2007), pp. 391–410.Google Scholar
  33. 33.
    G. M. Laslett, W. S. Kendall, A. J. W. Gleadow, and I. R. Duddy, “Bias in measurement of fission-track length distributions,” Nucl. Tracks Radiat. Meas. 6, 79–85 (1982).CrossRefGoogle Scholar
  34. 34.
    P. W. Layer, R. Newberry, K. Fujita, L. Parfenov, V. Trunilina, and A. Bakharev, “Tectonic setting of the plutonic belts of Yakutia, northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry,” Geology 29, 167–170 (2001).CrossRefGoogle Scholar
  35. 35.
    F. Lisker, B. Ventura, and U. A. Glasmacher, “Apatite thermochronology in modern geology,” in Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models, Vol. 324 of Geol. Soc., London, Spec. Publ., Ed. by F. Lisker, B. Ventura, and U. A. Glasmacher (London, 2009), pp. 1–23.Google Scholar
  36. 36.
    F. W. McDowell, W. C. McIntosh, and K. A. Farley, “A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard,” Chem. Geol. 214, 249–263 (2005).CrossRefGoogle Scholar
  37. 37.
    C. W. Naeser, R. A. Zimmermann, and G. T. Cebula, “Fission-track dating of apatite and zircon: An interlaboratory comparison,” Nucl. Tracks 5, 65–72 (1981).CrossRefGoogle Scholar
  38. 38.
    L. M. Parfenov, A. V. Prokopiev, and V. V. Gaiduk, “Cretaceous frontal thrusts of the Verkhoyansk fold belt, eastern Siberia,” Tectonics 14, 342–358 (1995).CrossRefGoogle Scholar
  39. 39.
    T. Tagami, R. F. Galbraith, R. Yamada, and G. M. Laslett, “Revised annealing kinetics of fission tracks in zircon and geological implications,” in Advances in Fission-Track Geochronology, Ed. by P. Van den Haute and F. De Corte (Kluwer, Dordrecht, 1998), pp. 99–112.Google Scholar
  40. 40.
    J. Toro, A. V. Prokopiev, J. Colgan, T. Dumitru, and E. L. Miller, “Apatite fission-track thermochronology of the southern Verkhoyansk fold-and-thrust belt, Russia,” Am. Geophys. Union, Fall Meeting, 2004, Abstr. GP44A-01. http://adsabs.harvard.edu/abs/ 2004AGUFMGP44A..01T.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Malyshev
    • 1
    • 2
    Email author
  • A. K. Khudoley
    • 1
  • U. A. Glasmacher
    • 3
  • G. G. Kazakova
    • 4
  • M. A. Kalinin
    • 4
  1. 1.Institute of Earth Sciences, St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of Earth Sciences, Heidelberg UniversityHeidelbergGermany
  4. 4.Karpinsky Russian Geological Research InstituteSt. PetersburgRussia

Personalised recommendations