, Volume 52, Issue 6, pp 618–633 | Cite as

Seismotectonic Activation of Modern Structures of the Siberian Craton

  • L. P. ImaevaEmail author
  • V. S. Imaev
  • B. M. Koz’min


Our research of the modern structures of Siberian Craton aims to reveal regional regularities in the seismotectonic destruction of the Earth’s crust and to clarify the dynamics of the formation of the focal zones of strong earthquakes. Analysis of activated structures and marginal suture zones located in the study area was based on structural and geophysical data, the modern structural plan, and the quantitative characteristics of modern and recent tectonic movements, active faults, and tectonic stress fields identified by tectonophysical analysis of deformation and seismological parameters. Unambiguous correlation between the seismic activity level of modern structures and the rates of modern and recent tectonic movements were not determined in our study. The most active structures of the Siberian Craton located in zones of the dynamic influence of marginal sutures are contrasted against the gradient field of modern vertical tectonic movements and characterized by the mosaic field of the mean and low rates of modern movements. The kinematics of seismotectonic deformation and levels of seismic activation of suture zones of the Siberian Craton are governed by global geodynamic processes taking place at the boundaries between the Eurasian, North American and Amur lithospheric plates. The activated structures in the northern regions of Siberian platform, which are characterized by the highest rates of modern movements, are heterogeneous. Both fluid processes and glacioisostatic movements may have influenced the dynamics of the formation of these high-gradient deformation zones. In seismotectonic studies aimed at determining levels of the potential seismic hazard of modern structures, we find it important to take into account errors in geodetic data and ensure more correct reference to the rates of tectonic movements at the neotectonic stage. In order to correctly assess the degree of geodynamic activity of modern structures, special consideration should be given to the fluid-geodynamic factor that controls most geodynamic processes, including tectonic stress accumulation, the formation of earthquake focal zones, and the intensity of seismic events.


Siberian craton fluids marginal suture seismogenerating structures active faults kinematic types parageneses of active structures paleoseismogenic structures Late Cenozoic deformation earthquake mechanism seismotectonic deformation potential seismicity 



The present study employed some research results of project no. 0381-2616-0001 for the Institute of Geology of Diamond and Noble Metals, Siberian Branch, Russian Academy Sciences, and the Comprehensive Research Program of the Government of Sakha (Yakutia) Republic for 2016–2020.


  1. 1.
    E. V. Artyushkov, S. P. Korikovskii, Kh. I. Masson, and P. A. Chekhovich, “Nature of Pliocene–Quaternary crustal uplifts in the Precambrian cratons,” in Problems of Tectonics and geodynamics of the Earth’s Crust and Mantle: Proceedings of the L Meeting on Tectonics (GEOS, Moscow, 2018), Vol. 1, pp. 11–14.Google Scholar
  2. 2.
    V. T. Balobaev, Geothermy of Permafrost Zone in the Lithosphere of North Asia (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  3. 3.
    G. V. Bocharov, G. S. Gusev, L. V. Esipova, and V. B. Spektor, “Map of contemporary movements in the territory of Yakutian ASSR,” Geotektonika, No. 3, 60–63 (1982).Google Scholar
  4. 4.
    G. V. Bocharov and N. N. Zamaraev, “Geodetic measurements in South Yakutian geodynamic test areas,” Geod. Kartogr., No. 3, 30–34 (1991).Google Scholar
  5. 5.
    V. V. Gaiduk, Doctoral Dissertation in Geology and Mineralogy (Novosibirsk, 1995).Google Scholar
  6. 6.
    Geology of Northeast Asia, Ed. by M. I. Itsikson, N. I. Tikhomirov, and E. T. Shatalov (Nedra, Leningrad, 1973), Vol. 3 [in Russian].Google Scholar
  7. 7.
    G. S. Gusev, A. F. Petrov, and G. S. Fradkin, Structure and Evolution of the Earth’s Crust in Yakutia (Nauka, Moscow, 1985) [in Russian].Google Scholar
  8. 8.
    S. S. Drachev, “On the basement tectonics of the Laptev Sea shelf,” Geotectonics 36, 483–497 (2002).Google Scholar
  9. 9.
    A. D. Duchkov and L. S. Sokolova, “Thermal structure of the lithosphere of the Siberian Platform,” Geol. Geofiz. 38, 494–503 (1997).Google Scholar
  10. 10.
    A. D. Duchkov, M. N. Zheleznyak, D. E. Ayunov, O. V. Veselov, L. S. Sokolova, S. A. Kazantsev, P. Yu. Gornov, N. N. Dobretsov, I. I. Boldyrev, D. V. Pchel’nikov, and A. N. Dobretsov, Geothermal Atlas of Siberia and Russian Far East (2009–2015). Accessed February 16, 2018.Google Scholar
  11. 11.
    V. S. Imaev, L. P. Imaeva, and B. M. Koz’min, Seismotectonic of Yakutia (GEOS, Moscow, 2000) [in Russian].Google Scholar
  12. 12.
    L. P. Imaeva, V. S. Imaev, B. M. Koz’min, and S. V. Sleptsov, “Active seismostructures of the Lena–Aldan interfluve, Central Yakutia,” Issled. Zemli Kosmosa, No. 2, 1−6 (2006).Google Scholar
  13. 13.
    L. P. Imaeva, B. M. Koz’min, and V. S. Imaev, “Morphotectonics and fault-block structures in the southeastern flank of the Olekma–Stanovoi seismotectonic zone,” Otechestvennaya Geol., No. 5, 50–56 (2008).Google Scholar
  14. 14.
    L. P. Imaeva, V. S. Imaev, V. I. Mel’nikova, and B. M. Koz’min, “Recent structures and tectonic regimes of the stress–strain state of the Earth’s crust in the northeastern sector of the Russian Arctic region,” Geotectonics 50, 535–552 (2016). doi 10.1134/S0016852116060030CrossRefGoogle Scholar
  15. 15.
    Seismotectonic Map of Eastern Siberia, Scale 1 : 4 000 000, Ed. by G. S. Gusev, L. P. Imaeva, and I. I. Kolodeznikov, 2015. doi 10.2205/ESDB-VONZ-125-mapGoogle Scholar
  16. 16.
    I. G. Kissin, “Metamorphic dehydration of crustal rocks as a factor of seismic activity,” Dokl. Earth Sci. 351, 1473–1476 (1996).Google Scholar
  17. 17.
    A. M. Kuzin, “On the fluid component of the process forming fractured zones and faults,” Geol., Geofiz. Razrab. Neft. Gaz. Mestorozhd., No. 5, 43–50 (2014).Google Scholar
  18. 18.
    F. A. Letnikov, “Fluid mechanism of continental crust destruction and formation of sedimentary oil basins,” in Degassing of the Earth: Geofluids, Oil and Gas, Paragenerses in the System of Fossil Fuels. Abstracts of the International Conference (GEOS, Moscow, 2006), pp. 6–9.Google Scholar
  19. 19.
    A. P. Neustroev and L. M. Parfenov, “Thickness of the crust in the eastern Siberian Platform,” Geol. Geofiz., No. 2, 136–140 (1985).Google Scholar
  20. 20.
    A. A. Nikonov, Holocene and Present-Day Movements of the Earth’s Crust: Geological-Geomorphic and Seismotectonic Problems (Nauka, Moscow, 1977) [in Russian].Google Scholar
  21. 21.
    L. M. Parfenov and A. V. Prokop’ev, “Thrusted structures of the Kyllakh Range, South Verkhoyansk region,” Geol. Geofiz., No. 12, 3–15 (1986).Google Scholar
  22. 22.
    L. M. Parfenov, “Tectonic analysis,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 69–80.Google Scholar
  23. 23.
    A. V. Prokop’ev and A. V. Deikunenko, “Deformation structures of fold-and-thrust belts,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 156–198.Google Scholar
  24. 24.
    A. V. Prokop’ev, L. M. Parfenov, M. D. Tomshin, and I. I. Kolodeznikov, “Sedimentary cover of the Siberian Platform and adjacent fold-and-thrust belts,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 113–155.Google Scholar
  25. 25.
    Seismotectonics of the Northeastern Sector of Russian Arctic, Ed. by L. P. Imaeva and I. I. Kolodeznikov (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2017) [in Russian].Google Scholar
  26. 26.
    A. P. Smelov, “Basement of the North Asian Craton. Olenek Uplift,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 107–108.Google Scholar
  27. 27.
    A. P. Smelov, A. N. Zedgenizov, and V. F. Timofeev, “Basement of the North Asian Craton. Aldan–Stanovoi Shield,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 81–104.Google Scholar
  28. 28.
    V. V. Stognii and G. A. Stognii, Tectonic Layering of the Aldan–Stanovoi Geoblock (Nauka, Novosibirsk, 1997) [in Russian].Google Scholar
  29. 29.
    V. D. Suvorov and Z. A. Kornilova, “Deep structure of the Aldan Shield from seismological data on near earthquakes,” Geol. Geofiz., No. 2, 86–89 (1985).Google Scholar
  30. 30.
    Tectonics of Yakutia, Ed. by Yu. N. Trushkov (Nauka, Novosibirsk, 1975) [in Russian].Google Scholar
  31. 31.
    L. P. Imaeva, B. M. Koz’min, V. S. Imaev, N. N. Grib, and S. V. Ashurkov, “Seismotectonic destruction of the Earth’s crust in the zone of interaction of the northeastern side of the Baikal rift and the Aldan–Stanovoy block,” J. Seismol. 21, 385–410 (2017).CrossRefGoogle Scholar
  32. 32.
    K. G. Mackey, K. Fujita, and L. J. Ruff, “Crustal thickness of northeast Russia,” Tectonophyics 284, 283–297 (1998).CrossRefGoogle Scholar
  33. 33.
    G. A. Scholz, L. R. Sykes, and Y. P. Aggarwal, “Earthquake prediction: A physical basis,” Science 181, 803–810 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L. P. Imaeva
    • 1
    Email author
  • V. S. Imaev
    • 1
    • 2
  • B. M. Koz’min
    • 2
  1. 1.Institute of the Earth’s Crust, Siberian Branch, Russian Academy SciencesIrkutskRussia
  2. 2.Institute of Geology of Diamond and Noble Metals, Siberian Branch, Russian Academy SciencesYakutskRussia

Personalised recommendations