Advertisement

Geotectonics

, Volume 52, Issue 4, pp 447–467 | Cite as

Ophiolitic Complex of the Matachingai River on Eastern Chukotka: Fragment of Lithosphere in Mesozoic Back-Arc Basin

  • G. V. Ledneva
  • B. A. Bazylev
  • A. V. Moiseev
  • S. D. Sokolov
  • A. Ishiwatari
  • D. V. Kuzmin
  • B. V. Belyatsky
Article
  • 21 Downloads

Abstract

The Matachingai River basin is known among the few ophiolitic complexes on eastern Chukotka as the southern boundary of the Chukotka Fold System (in terms of tectonics, the Chukotka microcontinent or a fragment of the Arctic Alaska–Chukotka microplate). This complex comprises tectonic blocks of residual spinel harzburgite with dunite bodies and pyroxenite, olivine gabbro, and leucogabbro veins; blocks of hornblende gabbro, diorite, and plagiogranite; and Upper Jurassic–Lower Cretaceous basaltic–cherty and cherty–carbonate rocks. The geological relationships of rocks within tectonic blocks, the compositions of primary minerals, the bulk geochemistry of rocks, as well as the strontium, neodymium, and lead isotopic compositions, make it possible to consider individual tectonic blocks of the complex as fragments of a disintegrated oceanic-type lithosphere that formed in a back-arc spreading center. The melts, crystallization products of which are represented by hornblende gabbro of blocks, olivine gabbro of veins, and basalts, separated from geochemically and isotopically heterogeneous mantle. Blocks composed of rocks with various modal composition are likely relicts of an oceanic lithosphere of different segments of a back-arc basin. The studied complex may be a lithosphere of one of the Middle–Late Jurassic back-arc basins. Fragments of these basins are retained in ophiolitic complexes on Great Lyakhovsky Island of the New Siberian Islands Archipelago, western Chukotka, and the Brooks Range in Alaska.

Keywords

eastern Chukotka Chukotka Fold System ophiolites spinel peridotite pyroxenite gabbro back-arc spreading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Akinin, Candidate’s Dissertation in Geology and Mineralogy (Magadan, 1990).Google Scholar
  2. 2.
    A. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk–Chukotka volcanic belt,” Petrology 19, 237–277 (2011).CrossRefGoogle Scholar
  3. 3.
    B. A. Bazylev, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2003).Google Scholar
  4. 4.
    B. A. Bazylev and G. V. Ledneva, “Geobarometry of mineral associations of plagioclase lherzolites–olivine gabbro-norites: Approaches, problems, and preliminary results,” in Proceedings of the VIII Meeting of the Interridge Russian Division (All-Russia Scientific Research Institute of Geology and Mineral Resources of the World Ocean, St. Petersburg, 2013), pp. 9–11.Google Scholar
  5. 5.
    B. A. Bazylev, G. V. Ledneva, Ya. V. Bychkova, D. V. Kuzmin, and N. N. Kononkova, “Geochemical peculiarities of dunites and melts trapped by them,” in Proceedings of the V International Conference “Ultrabasic-Basic Rock Complexes: Geology, Structure, and Ore Potential” (Buryat State Univ., Ulan Ude, 2017), pp. 39–41.Google Scholar
  6. 6.
    B. A. Bazylev and S. A. Silantyev, “Geodynamic interpretation of the subsolidus recrystallization of mantle spinel peridotites. 1. Mid-ocean ridges,” Petrology 8, 201–213 (2000).Google Scholar
  7. 7.
    V. N. Voevodin, N. G. Zhitkov, and V. A. Solov’ev, “Mesozoic eugeosyncline complex in the Chukotka,” Geotektonika, No. 6, 101–109 (1978).Google Scholar
  8. 8.
    A. V. Ganelin, Ophiolite Complexes of Western Chukotka: Structure, Age, Composition, and Geodynamic Formation Settings (GEOS, Moscow, 2017) [in Russian].Google Scholar
  9. 9.
    A. V. Ganelin and S. A. Silantyev, “Composition and geodynamic conditions of formation of the intrusive rocks of the Gromadnensky–Vurguveem peridotitegabbro massif, Western Chukotka,” Petrology 16, 606–626 (2008).CrossRefGoogle Scholar
  10. 10.
    M. L. Gel’man, “Phanerozoic granite-metamorphic domes in Northeastern Siberia. Part 1. Geological history of Paleozoic and Mesozoic domes,” Tikhookean. Geol., No. 4, 102–115 (1995).Google Scholar
  11. 11.
    Geological Map of the USSR and Adjacent Areas, Scale 1: 2500000, Ed. by D. V. Nalivkin (Karpinsky Russian Geological Research Inst., Leningrad, 1983) [in Russian].Google Scholar
  12. 12.
    S. S. Drachev and L. A. Savostin, “Ophiolites of Great Lyakhovsky Island, New Siberian Islands,” Geotektonika, No. 3, 98–107 (1993).Google Scholar
  13. 13.
    I. L. Zhulanova, Crust of Northeastern Asia in the Precambrian and Phanerozoic (Nauka, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    V. K. Karandashev, A. N. Turanov, T. A. Orlova, A. E. Lezhnev, S. V. Nosenko, N. I. Zolotareva, and I. R. Moskvina, “Application of ICP-MS method for element analysis of environemtal objects,” Zavod. Lab., Diagn. Mater. 73 (1), 12–22 (2007).Google Scholar
  15. 15.
    Yu. A. Kosygin, V. N. Voevodin, N. G. Zhitkov, and V. A. Solov’ev, “East Chukotka volcanic zone and tectonic nature of volcanogenic belts,” Dokl. Akad. Nauk SSSR 216, 885–888 (1974).Google Scholar
  16. 16.
    I. N. Kotlyar, I. L. Zhulanova, T. B. Rusakova, and A.M. Gagieva, Isotope Systems of Igneous and Metamorphic complexes of Northeast Russia (North-East Interdisciplinary Scientific Research Inst., Far Eastern Scientific Center, Russian Academy of Sciences, Magadan, 2001) [in Russian].Google Scholar
  17. 17.
    A. B. Kuz’michev, E. V. Sklyarov, and I. G. Barash, “Pillow basalts and glaucophane schists on the Great Lyakhovsky Island (New Siberian Islands)—fragments of the lithosphere of the South Anyui Paleocean,” Geol. Geofiz. 46, 1367–1381 (2005).Google Scholar
  18. 18.
    P. P. Lychagin, S. G. Byalobzheskii, Yu. A. Kolyasnikov, E. A. Corago, and V. B. Likman, Geology and Petrography of the Gromadnenskysko-Vurguveem Gabbro-Norite Massif, South Anyui zone (North-East Interdisciplinary Scientific Research Inst., Far Eastern Scientific Center, Russian Academy of Sciences, Magadan, 1991) [in Russian].Google Scholar
  19. 19.
    P. P. Lychagin, “Aluchina massif and problems of ophiolitic ultrabasites and gabbros in Mesozoic of Northeastern USSR,” Tikhookean. Geol., No. 5, 33–41 (1985).Google Scholar
  20. 20.
    G. E. Nekrasov, “Transform strike-slip tectonic model (alternative to collision one) of the Verkhoyansk–Chukotka Mesozoides,” in Proceeedings of the XLIX Meeting on Tectonics Dedicated to the 100th Anniversary of Academician Yu. M. Pushcharovskii “Tectonics of Contemporary and Ancient Oceans and Their Margins,” Ed. by K. E. Degtyarev (GEOS, Moscow, 2017), Vol. 2, pp. 33–36.Google Scholar
  21. 21.
    M. I. Tuchkova, G. E. Bondarenko, M. I. Buyakaite, D. I. Golovin, I. O. Galuskina, and E. V. Pokrovskaya, “Deformation of the Chukchi microcontinent: Structural, lithologic, and geochronological evidence,” Geotectonics 41, 403–421 (2007).CrossRefGoogle Scholar
  22. 22.
    G. A. Tynankergav and Yu. M. Bychkov, “Siliceousvolcanogenic-terrigenous deposits of the western Chukshi Peninsula,” Dokl. Akad. Nauk SSSR 296, 698–700 (1987).Google Scholar
  23. 23.
    A. I. Khanchuk, V. V. Golozubov, S. G. Byalobzheskii, L. I. Popenko, N. A. Goryachev, and S. M. Rodionov, “Cratonic and orogenic belts of eastern Russia,” in Geodynamics, Magmatism, and Metallogeny of Eastern Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), Vol. 1, pp. 93–229.Google Scholar
  24. 24.
    V. I. Shul’diner and V. F. Nedomolkin, “Crystalline basement of the Eskimo massif,” Sov. Geol., No. 10, 33–47 (1976).Google Scholar
  25. 25.
    A. A. Shchipanskii, “Boninites through time and space: petrogenesis and geodynamic settings,” Geodin. Tektonofiz. 7, 143–172 (2016).CrossRefGoogle Scholar
  26. 26.
    V. V. Akinin and A. T. Calvert, “Cretaceous mid-crustal metamorphism and exhumation of the Koolen Gneiss Dome, Chukotka, northeastern Russia,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Geol. Soc. Am., Spec. Pap. vol. 360, Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Geol. Soc. Am., Boulder, 2002), pp. 147–165.Google Scholar
  27. 27.
    “Penrose field conference on ophiolites,” Geotimes 17, 24–25 (1972).Google Scholar
  28. 28.
    C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).CrossRefGoogle Scholar
  29. 29.
    B. A. Bazylev, A. Popević, S. Karamata, N. N. Kononkova, S. G. Simakin, J. Olujić, L. Vujnović, and E. Memović, “Mantle peridotites from the Dinaridic ophiolite belt and the Vardar zone western belt, central Balkan: a petrological comparison,” Lithos 108, 37–71 (2009).CrossRefGoogle Scholar
  30. 30.
    Bering Strait Geologic Field Party, “Koolen metamorphic complex, NE Russia: Implications for tectonic evolution of the Bering Strait region,” Tectonics 16, 713–729 (1997).CrossRefGoogle Scholar
  31. 31.
    H. B. Dick and T. Bullen, “Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas,” Contrib. Mineral. Petrol. 86, 54–76 (1984).CrossRefGoogle Scholar
  32. 32.
    Y. Dilek and H. Furnes, “Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere,” Geol. Soc. Am. Bull. 123, 387–411 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Fretzdorff, R. A. Livermore, C. W. Devey, P. T. Leat, and P. Stoffers, “Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean,” J. Petrol. 43, 1435–1467 (2002).CrossRefGoogle Scholar
  34. 34.
    A. Grantz, D. Sholl, J. Toro, and S. L. Klemperer, “Geologic structure of Bering and Chukchi shelves adjacent to Bering–Chukchi Deep Seismic Transect and tectonostratigraphic terranes of adjacent landmasses,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Geol. Soc. Am., Spec. Pap. vol. 360, Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Geol. Soc. Am., Boulder, Colo., 2002), Plate 1.Google Scholar
  35. 35.
    R. A. Harris, “Geochemistry and tectonomagmatic origin of the Misheguk massif, Brooks Range ophiolitic belt, Alaska,” Lithos 35, 1–25 (1995).CrossRefGoogle Scholar
  36. 36.
    R. A. Himmelberg and G. R. Loney, “The Kanuti ophiolite, Alaska,” J. Geophys. Res.: Solid Earth 94, 15869–15900 (1993).Google Scholar
  37. 37.
    K. Hoernle, F. Hauff, R. Werner, P. van den Bogaard, A. D. Gibbons, S. Conrad, and R. D. Muller, “Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere,” Nat. Geosci. 4, 883–887 (2011).CrossRefGoogle Scholar
  38. 38.
    T. Ishii, P. T. Robinson, H. Maekawa, and R. Fiske, “Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara–Mariana Forearc, Leg. 125,” in Proceedings of the Ocean Drilling Program, Scientific Results, Ed. by P. Fryer, J. A. Pearce, and L. B. Stokking (College Station, Tex., 1992), Vol. 125, pp. 445–485.Google Scholar
  39. 39.
    E. A. Jarosevich, J. A. Nelen, and J. A. Norberg, “Reference sample for electron microprobe,” Geostand. Newslett. 4, 43–47 (1980).CrossRefGoogle Scholar
  40. 40.
    K. P. Jochum, D. B. Dingwell, A. Rocholl, B. Stoll, A. W. Hofmann, S. Becker, A. Besmehn, D. Bessette, H. J. Dietze, P. Dulski, J. Erzinger, E. Hellebrand, P. Hoppe, I. Horn, K. Janssens, et al., “The preparation and preliminary characterization of eight geological MPI-DING reference glasses for in-situ microanalysis,” Geostand. Newslett. 24, 87–133 (2000).CrossRefGoogle Scholar
  41. 41.
    K. P. Jochum, B. Stoll, K. Herwig, and M. Willbold, “Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd: YAG laser and matrix-matched calibration,” J. Anal. At. Spectrom. 22, 112–121 (2007).CrossRefGoogle Scholar
  42. 42.
    K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, D. A. Frick, D. Günther, and J. Enzweiler, “Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines,” Geostand. Geoanal. Res. 35, 397–429 (2011).CrossRefGoogle Scholar
  43. 43.
    V. S. Kamenetsky, A. J. Crawford, and S. Meffre, “Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks,” J. Petrol. 42, 655–671 (2001).CrossRefGoogle Scholar
  44. 44.
    J. I. Kimura, J. B. Gill, S. Skora, P. E. van Keken, and H. Kawabata, “Origin of geochemical mantle components: Role of subduction filter,” Geochem. Geophys. Geosyst. 17, 3289–3325 (2016).CrossRefGoogle Scholar
  45. 45.
    T. Kuritani, E. Ohtani, And J. I. Kimura, “Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation,” Nat. Geosci. 4, 713–716 (2011).CrossRefGoogle Scholar
  46. 46.
    G. V. Ledneva, V. L. Pease, and S. D. Sokolov, “Permo-Triassic hypabyssal basic intrusions and associated tholeiitic basalts of the Kolyuchinskaya Bay, Chukotka (NE Russia): Links to the Siberian LIP,” J. Asian Earth Sci. 40, 737–745 (2011).CrossRefGoogle Scholar
  47. 47.
    E. L. Miller, J. Toro, G. Gehrels, J. M. Amato, A. Prokopiev, M. I. Tuchkova, V. V. Akinin, T. A. Dumitru, T. E. Moore, and M. P. Cecile, “New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology,” Tectonic. 25 (2006). https://doi.org/.10.1029/2005TC001830
  48. 48.
    T. E. Moore, J. N. Aleinikoff, and K. R. Wirth, “Middle Jurassic U-Pb ages for Brooks Range ophiolites,” EOS, Am. Geophys. Union Fall Meeting, Abstr. 79, 807–808 (1998).Google Scholar
  49. 49.
    D. T. Murphy, K. D. Collerson, and B. S. Kamber, “Lamproites from Gaussberg, Antarctica: Possible transition zone melts of Archaean subducted sediments,” J. Petrol. 43, 981–1001 (2002).CrossRefGoogle Scholar
  50. 50.
    B. A. Natal’in, J. M. Amato, J. Toro, and J. E. Wright, “Paleozoic rocks of the Chegitun River Valley, northern Chukotka Peninsula: insights into the tectonic evolution of the eastern Arctic,” Tectonics 18, 977–1003 (1999).CrossRefGoogle Scholar
  51. 51.
    W. J. Nokleberg, T. D. West, K. M. Dawson, V. I. Shpikerman, T. K. Bundtzen, L. M. Parfenov, J. W. H. Monger, V. V. Ratkin, B. V. Baranov, S. G. Byalobzhesky, M. F. Diggles, R. A. Eremin, K. Fujita, S. P. Gordey, M. E. Gorodinskiy, et al., Summary terrane, Mineral Deposit, and Metallogenic Belt Maps of the Russian Far East, Alaska, and the Canadian Cordillera: U.S. Geol. Surv. Open-File Report 98-136 (U.S. Geol. Surv., Washington, 1998).Google Scholar
  52. 52.
    D. B. Othman, M. Polve, and C. J. Allegre, “Nd–Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust,” Nature 307, 510–515 (1984).CrossRefGoogle Scholar
  53. 53.
    J. S. Pallister, J. R. Budahn, and B. L. Murchey, “Pillow basalts of the Angayucham terrane: Oceanic plateau and island arc crust accreted to Brooks Range,” J. Geophys. Res.: Solid Earth Planet. 94, 15901–15923 (1989).CrossRefGoogle Scholar
  54. 54.
    J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, “Geochemical mapping of the Mariana arc-basin system: Implication for the nature and distribution of subduction components,” Geochem. Geophys. Geosyst. 6, (2005). https://doi.org/.10.1029/2004GC000895
  55. 55.
    J. A. Pearce and R. J. Stern, “Origin of back-arc basin magmas: Trace element and isotope perspectives,” in Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Ed. by D. M. Christie, C. R. Fisher, S. M. Lee, and S. Givens (Am. Geophys. Union, Washington, 2006), pp. 63–87.CrossRefGoogle Scholar
  56. 56.
    T. Plank and C. H. Langmuir, “Effects of the melting regime on the composition of oceanic crust,” J. Geophys. Res.: Solid Earth 97, 19749–19770 (1992).CrossRefGoogle Scholar
  57. 57.
    M. K. Reichow, M. S. Pringle, A. I. Al’mukhamedov, M. B. Allen, V. L. Andreichev, M. M. Buslov, C. E. Davies, G. S. Fedoseev, J. G. Fitton, S. Inger, A. Ya. Medvedev, C. Mitchell, V. N. Puchkov, I. Yu. Safonova, R. A. Scott, and A. D. Sauders, “The timing and extent of the eruption of the Siberian Traps large igneous province: Implication for the end-Permian environmental crisis,” Earth Planet. Sci. Lett. 277, 9–20 (2009).CrossRefGoogle Scholar
  58. 58.
    P. Richard, N. Shimizu, and C. J. Allegre, “143Nd/146Nd, a natural trasser: An application to oceanic basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976).CrossRefGoogle Scholar
  59. 59.
    A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S. L. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).CrossRefGoogle Scholar
  60. 60.
    S. D. Sokolov, G. Ye. Bondarenko, A. K. Khudoley, O. L. Morozov, M. V. Luchitskaya, M. I. Tuchkova, and P. W. Layer, “Tectonic reconstruction of Uda-Murgal arc and the Late Jurassic and Early Cretaceous convergent margin of Northeast Asia–Northwest Pacific,” in Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov, Stephan Mueller Spec. Publ. Ser. Vol. 4, Ed. by D. B. Stone, K. Fujita, P. W. Layer, E. L. Miller, A. V. Prokopiev, and J. Toro (2009), pp. 273–288.Google Scholar
  61. 61.
    S. D. Sokolov, G. Ye. Bondarenko, O. L. Morozov, V. A. Shekhovtsov, S. P. Glotov, A. V. Ganelin, and I. R. Kravchenko-Berezhnoy, “South Anuyi suture, northeast Arctic Russia: Facts and problems,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Geol. Soc. Am., Spec. Pap. vol. 360, Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Geol. Soc. Am., Boulder, 2002), pp. 209–224.Google Scholar
  62. 62.
    S. D. Sokolov, G. V. Ledneva, M. I. Tuchkova, M. V. Luchitskaya, A. V. Ganelin, and V. E. Verzhbitsky, “Chukchi Arctic continental margins: Tectonic evolution, link to the opening of the Amerasia Basin,” Proceedings of the International Conference on Arctic Margins, ICAM VI, Ed. by D. B. Stone, G. E. Grikurov, J. G. Clough, G. N. Oakey, and D. K. Thurston (Karpinsky Russian Geological Research Inst., St. Petersburg, 2014), pp. 97–113.Google Scholar
  63. 63.
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes,” in Magmatism in the Ocean Basins, Geol. Soc. London, Spec. Publ. vol. 42. Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.Google Scholar
  64. 64.
    Y. Tatsumi, T. Suzuki, H. Ozawa, K. Hirose, T. Hanyu, and Y. Ohishi, “Accumulation of “anti-continent” at the base of the mantle and its recycling in mantle plumes,” Geochim. Cosmochim. Acta 143, 23–33 (2014).CrossRefGoogle Scholar
  65. 65.
    P. R. A. Wells, “Pyroxene thermometry in simple and complex systems,” Contrib. Mineral. Petrol. 62, 129–139 (1977).CrossRefGoogle Scholar
  66. 66.
    M. Willbold and A. Stracke, “Formation of enriched mantle components by recycling of upper and lower continental crust,” Chem. Geol. 276, 188–197 (2010).CrossRefGoogle Scholar
  67. 67.
    K. R. Wirth, J. M. Bird, A. E. Blythe, and D. J. Harding, “Age and evolution of western Brooks Range ophiolites, Alaska: Results from 40Ar/39Ar thermochronology,” Tectonics 12, 410–423 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • G. V. Ledneva
    • 1
  • B. A. Bazylev
    • 2
  • A. V. Moiseev
    • 1
  • S. D. Sokolov
    • 1
  • A. Ishiwatari
    • 3
  • D. V. Kuzmin
    • 4
  • B. V. Belyatsky
    • 5
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Nuclear Regulation AuthorityRoppongiMinato-ku, TokyoJapan
  4. 4.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  5. 5.Center for Isotope ResearchKarpinsky Russian Geological Research InstituteSt. PetersburgRussia

Personalised recommendations