Advertisement

Geotectonics

, Volume 51, Issue 3, pp 209–229 | Cite as

Hot and cold zones of the Southeast Indian Ridge and their influence on the peculiarities of its structure and magmatism (Numerical and Physical Modelling)

  • E. P. Dubinin
  • Yu. I. Galushkin
  • A. L. Grokholskii
  • A. V. Kokhan
  • N. M. Sushchevskaya
Article
  • 67 Downloads

Abstract

The paper describes the specific features of the bottom topography and morphostructural segmentation along the strike of the Southeast Indian Ridge (SEIR) and in the zones of influence of the Amsterdam–St. Paul hot spot and the anomalous zone of the relatively cold mantle in the area of the Australian–Antarctic discordance. Numerical estimates of changes of thermal state and strength of the crust in axial and off-axial zones of the SEIR were performed. Сorrelation between the thermal–rheological settings in the axial zone of the ridge with the seabed topography and the morphostructural segmentation and magmatism has been established. The numerical modelling results make it possible to assume the presence of along-axis asthenospheric flows under the axial zone of the SEIR. One of them, which was initiated by the Amsterdam–St. Paul point and the Kerguelen plume, is oriented from west to east, and the second, located east of the Australian–Antarctic discordance, is oriented from east to west. Taking into account the numerical modelling results of the thermal regime and the change in thickness of the brittle layer of the axial lithosphere, we performed a physical modelling of the influence of temperature anomalies in the mantle on the peculiarities of crustal deformation in the axial zones of the ridge. The experimental modelling showed that the presence of a thermal anomaly in the sublithosphere mantle in the form of a local heat source (hot spot) will noticeably influence the geometry of the rift axis and its position in relation to the hot spot. An area of anomalous topography forms under the influence of the hot spot, traces of which are preserved in the off-axis spreading flank zones, as in the case of the Amsterdam–St. Paul hot spot. More contrasting and dissected topography forms in zones with a relatively low typical mantle temperature in the process of crustal accretion.

Keywords

Southeast Indian Ridge topography segmentation numerical and physical modelling thermal anomalies in mantle magmatism accretion ridge structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Grachev, “Identification of mantle plumes based on studying the composition of volcanic rocks and their isotopic-geochemical characteristics,” Petrology 11, 562–596 (2003).Google Scholar
  2. 2.
    E. P. Dubinin and S. A. Ushakov, Oceanic Riftogenesis (GEOS, Moscow, 2001) [in Russian].Google Scholar
  3. 3.
    E. P. Dubinin, Yu. I. Galushkin, and N. M. Sushchevskaya, “Spreading ridges and transform faults,” in World Ocean, Vol. 1: Geology and Tectonics of Ocean. Catastrophic Phenomena in Ocean, Ed. by L. I. Lobkovskii (Nauchn. Mir, Moscow, 2013), pp. 92–170.Google Scholar
  4. 4.
    N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (GEO, Novosibirsk, 2001) [in Russian].Google Scholar
  5. 5.
    L. I. Lobkovskii, A. M. Nikishin, and V. E. Khain, Contemporary Problems of Geotectonics and Geodynamics (Nauchn. Mir, Moscow, 2004) [in Russian].Google Scholar
  6. 6.
    V. N. Puchkov, “The controversy over plumes: Who is actually right?,” Geotectonics 43, 1–17 (2009).CrossRefGoogle Scholar
  7. 7.
    N. M. Sushchevskaya, L. V. Dmitriev, and A. V. Sobolev, “Petrochemical criterion for classification of hardening glasses of oceanic tholeiites,” Dokl. Akad. Nauk SSSR 268, 953–961 (1983).Google Scholar
  8. 8.
    N. M. Sushchevskaya, T. I. Tsekhonya, E. P. Dubinin, E. G. Mirlin, and N. N. Kononkova, “Formation of oceanic crust in mid-ocean ridges of the Indian Ocean,” Geochem. Int. 34, 963–975 (1996).Google Scholar
  9. 9.
    N. M. Sushchevskaya, Ye. V. Koptev-Dvornikov, N. A.Migdisova, D. M. Khvorov, A. A. Peyve, S. G. Skolotnev, B. V. Belyatskiy, and V. S. Kamenetskiy, “Features of the processes of crystallization and tholeiite magmas of the western end of African-Antarctic Ridge (Shpiss Ridge) in the area of Bouve triple junction,” Ross. Zh. Nauk. Zemle 1, 221–250 (1999).Google Scholar
  10. 10.
    A. I. Shemenda, “Similarity criteria when mechanical simulation of tectonic processes,” Geol. Geofiz., No. 10, 10–19 (1983).Google Scholar
  11. 11.
    P. Ball, G. Eagles, C. Ebinger, K. McClay, and J. Totterdel, “The spatial and temporal evolution of strain during the separation of Australia and Antarctica,” Geochem. Geophys. Geosyst. 14 (8), 2771–2799 (2013). doi 10.1002/ggge.20160CrossRefGoogle Scholar
  12. 12.
    J. M. Baran, J. R. Cochran, S. M. Carbotte, and M. R. Nedimovic, “Variations in upper crustal structure due to variable mantle temperature along the Southeast Indian Ridge,” Geochem. Geophys. Geosyst. 6 (11), Pap. No. Q11002 (2005). doi 10.1029/2005GC000943Google Scholar
  13. 13.
    J. M. Baran, J. R. Cochran, R. C. Holmes, et al., “Constraints on the mantle temperature gradient along the Southeast Indian Ridge from crustal structure and isostasy implications for the transition from an axial high to an axial valley,” Geophys. J. Int. 179, 144–153 (2009). doi 10.1111/j.1365-246X.2009.04300.xCrossRefGoogle Scholar
  14. 14.
    G. Bassi and J. Bonnin, “Rheological modeling and deformation instability of lithosphere under extension–II. Depth-dependent rheology,” Geophys. J. 94, 559–565 (1988).CrossRefGoogle Scholar
  15. 15.
    F. Benard, J. Callot, R. Vially, J. Schmitz, W. Roest, and M. Patriat, “The Kerguelen plateau: Records from long-living/composite microcontinent,” Mar. Pet. Geol. 27, 633–649 (2010).CrossRefGoogle Scholar
  16. 16.
    S. E. Bryan and R. E. Ernst, “Revised definition of Large Igneous Provinces (LIPs),” Earth Sci. Rev. 86, 175–202 (2008).CrossRefGoogle Scholar
  17. 17.
    J. R. Cochran and J.-C. Sempéré, “The Southeast Indian Ridge between 88°E and 118°E: Gravity anomalies and crustal accretion at intermediate spreading rates,” J. Geophys. Res.: Solid Earth 102, 15463–15487 (1997).CrossRefGoogle Scholar
  18. 18.
    M. F. Coffin and O. Eldholm, “Large Igneous Provinces: crustal structure, dimensions, and external consequences,” Rev. Geophys. 32, 1–36 (1994).CrossRefGoogle Scholar
  19. 19.
    J. A. Conder, D. S. Scheirer, and D. W. Forsyth, “Seafloor spreading of the Amsterdam–St.Paul hotspot plateau,” J. Geophys. Res.: Solid Earth 105, 8263–8277 (2000).CrossRefGoogle Scholar
  20. 20.
    V. Courtillot, A. Davaille, J. Besse, and J. Stock, “Three distinct types of hotspots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).CrossRefGoogle Scholar
  21. 21.
    C. Dalton, C. Langmuir, and A. Gale, “Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges,” Science 344, 80–83 (2014).CrossRefGoogle Scholar
  22. 22.
    C. DeMets, R. Gordon, and D. Argus, “Geologically current plate motions,” Geophys. J. Int. 181, 1–80 (2010).CrossRefGoogle Scholar
  23. 23.
    R. S. Detrick, P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher, “Multichannel seismic imaging of an axial magma chamber along the East Pacific Rise between 9° N and 13° N,” Nature 326, 35–41 (1987).CrossRefGoogle Scholar
  24. 24.
    E. P. Dubinin, A. V. Rozova, and A. A. Sveshnikov, “Endogenic nature of variations in the bottom topography of the mid-ocean rift zones with intermediate spreading rate,” Oceanology 49, 265–280 (2009). doi 10.1134/S0001437009020118CrossRefGoogle Scholar
  25. 25.
    E. P. Dubinin, A. L. Grokhol’skii, A. V. Kokhan, and A. A. Sveshnikov, “Thermal and rheological state of the lithosphere and specific features of structuring in the rift zone of the Reykjanes Ridge (from the results of numerical and experimental modeling),” Izv., Phys. Solid Earth 47, 586–599 (2011). doi 10.1134/S0001437009020118CrossRefGoogle Scholar
  26. 26.
    E. P. Dubinin, A. V. Kokhan, and N. M. Sushchevskaya, “Tectonics and magmatism of ultraslow spreading ridges,” Geotectonics 47, 131–155 (2013). doi 10.1134/S0016852113030023CrossRefGoogle Scholar
  27. 27.
    J. Dyment, J. Lin, and E. T. Baker, “Ridge-hotspot interactions,” Oceanography 20, 102–116 (2007).CrossRefGoogle Scholar
  28. 28.
    J. Escartin, G. Hirth, and B. Evans, “Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges,” Earth Planet. Sci. Lett. 151, 181–189 (1997).CrossRefGoogle Scholar
  29. 29.
    Yu. I. Galushkin, E. P. Dubinin, and A. A. Sveshnikov, “A nonstationary model of the thermal regime of axial zones of mid-ocean ridges: Formation of crustal and mantle magma chambers,” Izv., Phys. Solid Earth 43, 130–147 (2007). doi 10.1134/S1069351307020048CrossRefGoogle Scholar
  30. 30.
    Yu. I. Galushkin, E. P. Dubinin, and A. A. Sveshnikov, “Rheological layering of the oceanic lithosphere in rift zones of the Mid-Oceanic Ridges,” Dokl. Earth Sci. 418, 114–118 (2008). doi 10.1134/S1028334X0801025XCrossRefGoogle Scholar
  31. 31.
    GEBCO_08 grid. ver. 20090202. http://www.gebco.net.Google Scholar
  32. 32.
    A. L. Grokholskii and E. P. Dubinin, “Experimental Modeling of Structure-Forming Deformations in Rift Zones of Mid-Ocean Ridges,” Geotectonics 40, 64–80 (2006). doi 10.1134/S0016852106010067CrossRefGoogle Scholar
  33. 33.
    J. Goff, Y. Ma, A. Shah, J. Cochran, and J.-C. Sempéré, “Stochastic analysis of seafloor morphology on the flank of the Southeast Indian Ridge: The influence of ridge morphology on the formation of abyssal hills,” J. Geophys. Res.: Solid Earth 102, 15521–15534 (1997).CrossRefGoogle Scholar
  34. 34.
    D. Graham, K. Johnson, L. Douglas Priebe, and J. Lupton, “Hotspot–ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul islands: Helium isotope evidence,” Earth Planet. Sci. Lett. 167, 297–310 (1999).CrossRefGoogle Scholar
  35. 35.
    D. W. Graham, B. B. Hanan, C. Hemond, J. Blichert- Toft, and F. Albarède, “Helium isotopic textures in Earth’s upper mantle,” Geochem. Geophys. Geosyst. 15 (5), 2048–2074 (2014). doi 10.1002/2014GC005264CrossRefGoogle Scholar
  36. 36.
    R. C. Holmes, M. Tolstoy, J. R. Cochran, and J. S. Floyd, “Crustal thickness variations along the Southeast Indian Ridge (100°–116°E) from 2-D body wave tomography,” Geochem. Geophys. Geosyst. 9 (12), Pap. No. Q12020 (2008). doi 10.1029/2008GC002152Google Scholar
  37. 37.
    R. C. Holmes, M. Tolstoy, A. J. Harding, J. A. Orcutt, and J. P. Morgan, “Australian Antarctic Discordance as a simple mantle boundary,” Geophys. Res. Lett. 37 (9), Pap. No. L09309 (2010). doi 10.1029/2010GL042621Google Scholar
  38. 38.
    C. Kincaid, G. Ito, and C. Gable, “Laboratory investigation of the interaction of off-axis mantle plumes and spreading centers,” Nature 376, 758–761 (1995).CrossRefGoogle Scholar
  39. 39.
    S. H. Kirby, “Rheology of the lithosphere,” Rev. Geophys. Space Phys. 21, 1458–1487 (1983).CrossRefGoogle Scholar
  40. 40.
    M. Klein, C. Langmuir, and H. Staudigel, “Geochemistry of basalts from the Southeast Indian Ridge, 115°E–138°E,” J. Geophys. Res., [Solid Earth Planets] 96, 2089–2107 (1991).CrossRefGoogle Scholar
  41. 41.
    E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res., [Solid Earth Planets] 92, 8089–8115 (1987).CrossRefGoogle Scholar
  42. 42.
    P. Lonsdale, “Geomorphology and structural segmentation of the crest of the southern (Pacific-Antarctic) East Pacific Rise,” J. Geophys. Res.: Solid Earth 99, 4683–4702 (1994).CrossRefGoogle Scholar
  43. 43.
    Y. Ma and J. R. Cochran, “Transitions in axial morphology along the Southeast Indian Ridge,” J. Geophys. Res.: Solid Earth 101, 15849–15866 (1996).CrossRefGoogle Scholar
  44. 44.
    K. C. Macdonald, “Linkages between faulting, volcanism, hydrothermal activity and segmentation on fast spreading centers,” in Faulting and Magmatism at Midocean Ridges, Vol. 106 of Geophysical Monograph Series, Ed. by W. R. Buck, P. T. Delaney, J. A. Karson, Y. Lagabrielle (Am. Geophys. Union, Washington, DC, 1998), pp. 27–58.CrossRefGoogle Scholar
  45. 45.
    J. Mahoney, D. Graham, D. Christie, K. Johnson, L. Hall, and D. Vonderhaar, “Between a hotspot and a cold spot: Isotopic variation in the Southeast Indian ridge asthenosphere, 86°–118°E,” J. Petrol. 43, 155–1176 (2002).CrossRefGoogle Scholar
  46. 46.
    M. Maia, I. Pessanha, E. Sourreges, M. Patriat, P. Gente, C. Hémond, M. Janin, K. Johnson, W. Roest, J.-Y. Royer, and J. Vatteville, “Building of the Amsterdam–Saint-Paul plateau: A 10 Myr history of a ridge–hot spot interaction and variations in the strength of the hot spot source,” J. Geophys. Res.: Solid Earth 116 (B9), Pap. No. B09104 (2011). doi 10.1029/2010JB007768Google Scholar
  47. 47.
    B. V. Malkin and A. I. Shemenda, “Mechanism of rifting: Consideration based on results of physical modeling and on geological and geophysical data,” Tectonophysics 199, 193–210 (1991).CrossRefGoogle Scholar
  48. 48.
    K. M. Marks, P. R. Vogt, and S. A. Hall, “Residual depth anomalies and the origin of the Australian–Antarctic Discordance zone,” J. Geophys. Res., [Solid Earth Planets] 95, 17325–17337 (1990).CrossRefGoogle Scholar
  49. 49.
    K. M. Marks, D. T. Sandwell, P. R. Vogt, and S. A. Hall, “Mantle downwelling beneath the Australian- Antarctic discordance zone: Evidence from geoid height versus topography,” Earth Planet. Sci. Lett. 103, 325–338 (1991).CrossRefGoogle Scholar
  50. 50.
    W. J. Morgan, “Rodriguez, Darwin, Amsterdam, …, a second type of hotspot island,” J. Geophys. Res., B 83, 5355–5360 (1978).CrossRefGoogle Scholar
  51. 51.
    K. Okino, K. Matsuda, D. M. Christie, Y. Nogi, and K. Koizumi, “Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance,” Geochem. Geophys. Geosyst. 5 (12), Pap. No. Q12012 (2004). doi 10.1029/2004GC000793Google Scholar
  52. 52.
    J.-Y. Royer and R. Schlich, “Southeast Indian ridge between the Rodriguez triple junction and the Amsterdam and Saint-Paul Islands: Detailed kinematics for the past 20 m.y.,” J. Geophys. Res., [Solid Earth Planets] 93, 13524–13550 (1988).CrossRefGoogle Scholar
  53. 53.
    W. B. F. Ryan, S. M. Carbotte, J. O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R. A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky, “Global Multi-Resolution Topography synthesis,” Geochem. Geophys. Geosyst. 10 (3), Pap. No. Q03014 (2009). doi 10.1029/2008GC002332Google Scholar
  54. 54.
    D. Sandwell, D. Muller, W. Smith, E. Garcia, and R. Francis, “New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure,” Science 346, 65–67 (2014).CrossRefGoogle Scholar
  55. 55.
    D. S. Scheirer, D. W. Forsyth, J. A. Conder, M. A. Eberle, S.-H. Hung, K. T. M. Johnson, and D. W. Graham, “Anomalous seafloor spreading of the Southeast Indian Ridge near the Amsterdam–St.-Paul Plateau,” J. Geophys. Res.: Solid Earth 105, 8243–8262 (2000).CrossRefGoogle Scholar
  56. 56.
    J. G. Schilling, “Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges,” Nature 352, 397–403 (1991).CrossRefGoogle Scholar
  57. 57.
    R. C. Searle, J. A. Keeton, R. B. Owens, R. S. White, R. Mecklenburgh, B. Parsons, and S. M. Lee, “The Reykjanes Ridge: Structure and tectonics of a hot-spotinfluenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations,” Earth Planet. Sci. Lett. 160, 463–478 (1998).CrossRefGoogle Scholar
  58. 58.
    J.-C. Sempéré and J. R. Cochran, “The Southeast Indian Ridge between 88°E and 118°E: Variations in crustal accretion at constant spreading rate,” J. Geophys. Res.: Solid Earth 102, 15489–15505 (1997).CrossRefGoogle Scholar
  59. 59.
    A. Shah and J.-C. Sempéré, “Morphology of the transition from an axial high to a rift valley at the Southeast Indian Ridge and the relation to variations in mantle temperature,” J. Geophys. Res.: Solid Earth 103, 5203–5223 (1998).CrossRefGoogle Scholar
  60. 60.
    A. I. Shemenda and A. L. Groholsky, “Physical modeling of slow seafloor spreading,” J. Geophys. Res.: Solid Earth 99, 9137–9153 (1994).CrossRefGoogle Scholar
  61. 61.
    A. Tikku and S. Cande, “The oldest magnetic anomalies in the Australian-Antarctic Basin: Are they isochrons?,” J. Geophys. Res.: Solid Earth 104, 661–667 (1999).CrossRefGoogle Scholar
  62. 62.
    M. Tolstoy, A. J. Harding, and J. A. Orcutt, “Crustal thickness on the Mid-Atlantic Ridge: Bull’s eye gravity anomalies and focused accretion,” Science 262, 726–729 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • E. P. Dubinin
    • 1
  • Yu. I. Galushkin
    • 1
  • A. L. Grokholskii
    • 1
  • A. V. Kokhan
    • 2
  • N. M. Sushchevskaya
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Svarog LLC.MoscowRussia
  3. 3.Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations