, Volume 51, Issue 2, pp 131–151 | Cite as

Post-collisional magmatism of western Chukotka and Early Cretaceous tectonic rearrangement in northeastern Asia

  • P. L. Tikhomirov
  • V. Yu. Prokof’ev
  • I. A. Kal’ko
  • A. V. Apletalin
  • Yu. N. Nikolaev
  • K. Kobayashi
  • E. Nakamura


The paper presents new data on the isotopic age and chemical composition of volcanic rocks from the Tytyl’veem and Mangazeika basins of western Chukotka superposed on Mesozoides of the Verkhoyansk–Chukotka Tectonic Region. The results of SIMS U–Pb zircon dating (121.4 ± 2.8 and 118.0 ± 2.0 Ma) corroborate the Aptian age of the Tytyl’veem Formation. This age, in turn, indicates its formation after closure of the South Anyui ocean (Neocomian), but before origination of the Okhotsk–Chukotka Belt (Albian–Campanian). Post-collisional Aptian igneous rocks are widespread in the northern Verkhoyansk–Chukotka Tectonic Region; the legth of the corresponding igneous province is no less than 1400 km. In geochemical characteristics, the post-collisional volcanic rocks occurring in Western Chukotka are similar with the rocks from Andean-type igneous belts.


Early Cretaceous post-collisional magmatism geochronology geochemistry Verkhoyansk–Chukotka Region western Chukotka 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk-Chukotka volcanic belt,” Petrology 19, 237–277 (2011).CrossRefGoogle Scholar
  2. 2.
    V. V. Akinin, B. Thomson, and G. O. Polzunenkov, “U–Pb and 40Ar/39Ar dating of magmatism and mineralization at the Kupol and Dvoinoe gold deposits,” in Isotope Dating of Geological Processes: New Results, Approaches, and Perspectives. Proceedings of the VI All-Russia Conference on Isotope Geochronology (Inst. Geol. Geokhronol. Dokembriya Ross. Akad. Nauk, St. Petersburg, 2015), pp. 19–21.Google Scholar
  3. 3.
    A. I. Afitskii and B. F. Palymskii, “Reference sections of the Ainakhkurgen and Chimchememel’ formations, Lower Cretaceous, in the upper reach of the Greater Anyui River,” in Paleomagnetic and Biostratigraphic Characteristics of Some Mesozoic and Cenozoic Reference Sections in the Northern Far East, Vol. 37 of Tr. Sev.-Vost. Kompleksn. Nauchno-Issled. Inst., Akad. Nauk SSSR (Magadan, 1970), pp. 100–113.Google Scholar
  4. 4.
    V. F. Belyi, Stratigraphy and Structures of the Okhotsk-Chukotka Volcanic Belt (Nauka, Moscow, 1977) [in Russian].Google Scholar
  5. 5.
    V. F. Belyi, Geology of the Okhotsk-Chukotka Volcanic Belt (Sev.-Vost. Kompleksn. Nauchno-Issled. Inst. Dal’nevost. Otd. Ross. Akad. Nauk, Magadan, 1994) [in Russian].Google Scholar
  6. 6.
    G. F. Zhuravlev, M. A. Baranov, and S. S. Kaz’min, State Geologic Map of Russian Federation, Scale 1: 200000 (Second Generation). Sheets R-59-XXXI, R-59-XXXII, and Q-59-I,II (VSEGEI, St. Petersburg, 2000).Google Scholar
  7. 7.
    Ya. S. Komarova, Yu. A. Kostitsyn, and Yu. N. Nikolaev, “Rb-Sr age of diorite-porphyry Asket from the Mangazeika intrusive complex, Central Chukotka,” in Abstracts of the IX International Workshop on the Earth Sciences in Memory of L.L. Perchuk (Odessk. Nats. Univ. im. Mechnikova, Odessa, 2013), pp. 79–83.Google Scholar
  8. 8.
    I. N. Kotlyar and T. B. Rusakova, Cretaceous Magmatism and Ore-Bearing Potential of the Okhotsk-Chukotka Zone: Geologic-Geochronological Correlation (Sev.-Vost. Kompleksn. Nauchno-Issled. Inst. Dal’nevost. Otd. Ross. Akad. Nauk, Magadan, 2004) [in Russian].Google Scholar
  9. 9.
    L. I. Lobkovsky, V. E. Verzhbitsky, M. V. Kononov, A. A. Shreider, I. A. Garagash, S. D. Sokolov, M. I. Tuchkova, V. D. Kotelkin, and V. A. Vernikovsky, “Geodynamic model of the Arctic Region evolution in the Late Mesozoic and Cenozoic with respect to the problems of outer boundary of the Russian continental shelf,” Arkt. Ekol. Ekon., No. 1, 104–115 (2011).Google Scholar
  10. 10.
    G. M. Malysheva, E. P. Isaeva, Yu. B. Tikhomirov, and B. V. Vyatkin, State Geologic Map of Russian Federation, Scale 1: 200000 (Third Generation). Chukotka Series. Sheet Q-59 (Markovo). Explanatory Note (VSEGEI, St. Petersburg, 2012) [in Russian].Google Scholar
  11. 11.
    K. V. Paraketsov and G. I. Paraketsova, Stratigraphy and Fauna of Upper Jurassic and Lower Cretaceous Deposits of the Northeastern USSR (Nedra, Moscow, 1989) [in Russian].Google Scholar
  12. 12.
    L. M. Parfenov, Continental Margins and Island Arcs of the Mesozoides in the Northeastern Asia (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  13. 13.
    A. Ya. P’yankov, Geologic Map of the USSR, Scale 1: 200000. Anyui-Chaun Series. Sheet Q-59-I, II. Explanatory Note, Ed. by M. L. Gel’man (VSEGEI, Leningrad, 1980) [in Russian].Google Scholar
  14. 14.
    A. Ya. Radzivill and B. F. Palymskii, “Stratigraphy of Lower Cretaceous continental units in the Anyui-Anadyr interfluve,” in Proceedings on Geology and Mineral Resources of the Northeastern USSR (Magadan, 1972), Vol. 20, pp. 141–151.Google Scholar
  15. 15.
    A. G. Senotrusov, State Geologic Map of the USSR, Scale 1: 200000. Oloi Series. Sheet Q-58-VII, VIII. Explanatory Note, Ed. by K. V. Paraketsov (VSEGEI, Leningrad, 1981) [in Russian].Google Scholar
  16. 16.
    A. G. Senotrusov, State Geologic Map of the USSR, Scale 1: 200000. Oloi Series. Sheets Q-57-V, VI and Q-58-I,II (Mt. Konus). Explanatory Note, Ed. by I. A. Panychev (VSEGEI, Moscow, 1988) [in Russian].Google Scholar
  17. 17.
    S. D. Sokolov, “Tectonics of Northeast Asia: An overview,” Geotectonics 44, 493–509 (2010).CrossRefGoogle Scholar
  18. 18.
    S. D. Sokolov, G. E. Bondarenko, O. L. Morozov, A. V. Ganelin, and I. I. Podgornyi, “Nappe-type tectonics of the South Anyui Suture in the Western Chukot Peninsula,” Dokl. Earth Sci. 376, 7–11 (2001).Google Scholar
  19. 19.
    S. D. Sokolov, M. I. Tuchkova, A. V. Ganelin, G. E. Bondarenko, and P. Layer, “Tectonics of the South Anyui Suture, Northeastern Asia,” Geotectonics 49, 3–26 (2015).CrossRefGoogle Scholar
  20. 20.
    E. M. Spiridonov and Yu. D. Gritsenko, Epigenetic Low-Temperature Metamorphism and Co–Ni–Sb–As-Mineralization in the Norilsk Ore Field (Nauchn. mir, Moscow, 2009) [in Russian].Google Scholar
  21. 21.
    P. L. Tikhomirov, E. A. Kalinina, K. Kobayashi, and E. Nakamura, “Tytylveyem volcano-plutonic belt, the Early Cretaceous magmatic province of NE Asia,” in Geology of Polar Regions of the Earth: Proceedings of the XLII Meeting on Tectonics (GEOS, Moscow, 2009), Vol. 2, pp. 239–241.Google Scholar
  22. 22.
    R. B. Umitbaev, Okhotsk-Chaun Metallogenic Province (Nauka, Moscow, 1986) [in Russian].Google Scholar
  23. 23.
    N. I. Filatova, Perioceanic Volcanogenic Belts (Nedra, Moscow, 1988) [in Russian].Google Scholar
  24. 24.
    T. I. Frolova and I. A. Burikova, Magmatic Formations of the Contemporary Geodynamic Environments (Mosk. Gos. Univ., Moscow, 1997) [in Russian].Google Scholar
  25. 25.
    O. A. Furman, Legend to the Oloi Series of Sheets of the State Geologic Map of Russian Federation, Scale 1: 200000 (Anyuiskoe GGGP, Bilibino, 1999) [in Russian].Google Scholar
  26. 26.
    I. Yu. Cherepanova and I. V. Tibilov, Legend to the Anyui-Chaun Series of Sheets of the State Geologic Map of Russian Federation, Scale 1: 200000 (ZAO ChGGP, Pevek, 1998) [in Russian].Google Scholar
  27. 27.
    A. F. Buddington, “Granite emplacement with special reference to North America,” Geol. Soc. Am. Bull. 70, 671–748 (1959).CrossRefGoogle Scholar
  28. 28.
    H.-Y. Chiu, S.-L. Chung, M. H. Zarrinkou, S. S. Mohammadi, M. M. Khatib, and Y. Iizuka, “Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny,” Lithos 162–163, 70–87 (2013).CrossRefGoogle Scholar
  29. 29.
    R. W. Le Maitre, A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (Blackwell, Oxford, 1989).Google Scholar
  30. 30.
    J. Dewey, “Extensional collapse of orogens,” Tectonics 7, 1123–1139 (1988).CrossRefGoogle Scholar
  31. 31.
    W. R. Dickinson, “The Basin and Range province as a composite extensional domain,” Int. Geol. Rev. 44, 1–38 (2002).CrossRefGoogle Scholar
  32. 32.
    J. B. Gill, Orogenic Andesites and Plate Tectonics (Springer, New York, 1981).CrossRefGoogle Scholar
  33. 33.
    E. A. Kalinina, PhD Thesis (Inst. Study Earth’s Inter., Okayama Univ., Misasa, 2007).Google Scholar
  34. 34.
    R. W. Kay and M. S. Kay, “Creation and destruction of the lower continental crust,” Geol. Rundsch. 80, 259–278 (1991).CrossRefGoogle Scholar
  35. 35.
    A. B. Kuzmichev, “Where does the South Anyui suture go in the New Siberian Islands and Laptev Sea?: Implications for kinematics of the Amerasia Basin opening,” Tectonophysics 463, 86–108 (2009).CrossRefGoogle Scholar
  36. 36.
    P. W. Layer, R. Newberry, K. Fujita, L. Parfenov, V. Trunilina, and A. Bakharev, “Tectonic setting of the plutonic belts of Yakutia, northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry,” Geology 29, 167–170 (2001).CrossRefGoogle Scholar
  37. 37.
    K. R. Ludwig, ISOPLOT. Version 2.3. Berkeley Geochronology Center. Special Publication (Berkeley, 2000).Google Scholar
  38. 38.
    R. Meissner and W. Mooney, “Weakness of the lower continental crust: A condition for delamination, uplift, and escape,” Tectonophysics 296, 47–60 (1998).CrossRefGoogle Scholar
  39. 39.
    E. L. Miller, S. M. Katkov, A. Strickland, J. Toro, V. V. Akinin, and T. A. Dumitru, “Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui-Chukotka fold belt, North East Arctic Russia,” in Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov, Vol. 4 of Stephan Mueller Spec. Publ. Ser. (2009), pp. 157–175.Google Scholar
  40. 40.
    E. L. Miller and V. E. Verzhbitsky, “Structural studies near Pevek, Russia: Implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean,” in Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov, Vol. 4 of Stephan Mueller Spec. Publ. Ser. (2009), pp. 223–241.Google Scholar
  41. 41.
    A. Miyashiro, “Evolution of metamorphic belts,” J. Petrol. 2, 277–311 (1961).CrossRefGoogle Scholar
  42. 42.
    A. Miyashiro, “Volcanic rock series in island arcs and active continental margins,” Am. J. Sci. 274, 321–355 (1974).CrossRefGoogle Scholar
  43. 43.
    W. J. Nokleberg, L. M. Parfenov, J. W. H. Monger, I. O. Norton, A. I. Khanchuk, D. B. Stone, C. R. Scotese, D. W. Scholl, and K. Fujita, Phanerozoic Tectonic Evolution of the Circum-North Pacific: US Geol. Surv. Prof. Pap. 1626 (2001).Google Scholar
  44. 44.
    J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” in Andesites, Ed. by R. S. Thorpe (Wiley, New York, 1982), pp. 525–548.Google Scholar
  45. 45.
    J. A. Pearce and G. H. Gale, “Identification of oredeposition environment from trace element geochemistry of associated host rocks,” in Volcanic Processes in Ore Genesis, Vol. 7 of Geol. Soc. London, Spec. Publ. (London, 1977), pp. 14–24.Google Scholar
  46. 46.
    Permo-Carboniferous Magmatism and Rifting in Europe, Vol. 223 of Geol. Soc. London, Spec. Publ., Ed. by M. Wilson, E.-R. Neumann, G. R. Davies, M. J. Timmerman, M. Heeremans, and B. T. Larsen (London, 2004).Google Scholar
  47. 47.
    R. L. Rudnick and S. Gao, “Composition of the continental crust,” in Treatise on Geochemistry, Eds. by H. D. Holland and K. K. Turekian (Elsevier, Amsterdam, 2004), Vol. 3, pp. 1–64.Google Scholar
  48. 48.
    I. Seghedi, L. Maţenco, H. Downes, P. R. D. Mason, A. Szakács, and Z. Pécskay, “Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region,” Tectonophysics. 502, 146–157 (2011).CrossRefGoogle Scholar
  49. 49.
    S. D. Sokolov, G. Ye. Bondarenko, P. W. Layer, and I. R. Kravchenko-Berezhnoy, “South Anyui suture: Tectono-stratigraphy, deformations, and principal tectonic events,” in Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov, Vol. 4 of Stephan Mueller Spec. Publ. Ser. (2009), pp. 201–221.Google Scholar
  50. 50.
    S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basin, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.Google Scholar
  51. 51.
    P. L. Tikhomirov, E. A. Kalinina, K. Kobayashi, and E. Nakamura, “Late Mesozoic silicic magmatism of the North Chukotka area (NE Russia): Age, magma sources, and geodynamic implications,” Lithos 105, 329–346 (2008).CrossRefGoogle Scholar
  52. 52.
    P. L. Tikhomirov, E. A. Kalinina, T. Moriguti, A. Makishima, K. Kobayashi, I. Yu. Cherepanova, and E. Nakamura, “The Cretaceous Okhotsk-Chukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs,” J. Volcanol. Geotherm. Res. 221–222, 14–32 (2012).CrossRefGoogle Scholar
  53. 53.
    P. L. Tikhomirov, E. A. Kalinina, T. Moriguti, A. Makishima, K. Kobayashi, and E. Nakamura, “Trace element and isotopic geochemistry of Cretaceous magmatism in NE Asia: Spatial zonation, temporal evolution, and tectonic controls,” Lithos 264, 453–471 (2016).CrossRefGoogle Scholar
  54. 54.
    M. I. Tuchkova, S. D. Sokolov, A. K. Khudoley, V. E. Verzhbitsky, Y. Hayasaka, and A. V. Moiseev, “Permian and Triassic deposits of Siberian and Chukotka passive margins: sedimentation setting and provenances,” in ICAM VI: Proceedings of the VI International Conference on Arctic Margins, Fairbanks, Alaska, 2011 (VSEGEI, St. Petersburg, 2014), pp. 61–96.Google Scholar
  55. 55.
    T. Usui, K. Kobayashi, and E. Nakamura, “U–Pb isotope systematics of micro-zircon inclusions: Implications for the age and origin of eclogite xenolith from the Colorado Plateau,” Proc. Jpn. Acad. 78, 1–56 (2002).CrossRefGoogle Scholar
  56. 56.
    D. Wang and L. Shu, “Late Mesozoic basin and range tectonics and related magmatism in Southeast China,” Geosci. Frontiers 3, 109–124 (2012).CrossRefGoogle Scholar
  57. 57.
    M. Wilson, Igneous Petrogenesis: A Global Tectonic Approach (Springer, Berlin, 2007).Google Scholar
  58. 58.
    D. A. Wood, “The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • P. L. Tikhomirov
    • 1
  • V. Yu. Prokof’ev
    • 2
  • I. A. Kal’ko
    • 1
  • A. V. Apletalin
    • 1
  • Yu. N. Nikolaev
    • 1
  • K. Kobayashi
    • 3
  • E. Nakamura
    • 3
  1. 1.Geological FacultyMoscow State UniversityMoscowRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute for Planetary MaterialsOkayama UniversityTottoriJapan

Personalised recommendations