Advertisement

Geotectonics

, Volume 51, Issue 1, pp 53–73 | Cite as

Composition, structure, origin, and evolution of off-axis linear volcanic structures of the Brazil Basin, South Atlantic

  • S. G. SkolotnevEmail author
  • A. A. Peive
Article

Abstract

The paper considers the conditions and mechanisms of the formation of linear volcanic structures in the Brazil Basin, South Atlantic. Among these objects, those related to the ascent of deep mantle plumes predominate. It is shown that the ascent of melts from plume sources leads to the formation of (a) hot spot tracks in the form of linear volcanic ridges and (b) active hot lines in the form of submarine mountain chains with trends differing from those of hot spot tracks and with a more variable character of the age distribution of volcanic rocks. Fault tectonics affects the character of plume activity. In addition, plume material from a hot spot area is dragged by a moving plate as a flow or a sublithospheric lens, which leads to the long-term existence of particular independent segments of linear structures and sometimes to late volcanism reactivation within their limits. Decompression melting of the asthenospheric mantle in zones where thin lithosphere undergoes tension causes the formation of passive hot lines. The main mantle source for the considered volcanic rocks was a mixture of DMM and HIMU mantle components, with the latter abruptly dominating. In marginal oceanic regions, the EM1 component is also present (the EM2 component is found more rarely) within fragments of tectonically delaminated continental mantle that was trapped by the oceanic mantle during the breakup of Gondwana.

Keywords

linear volcanic rises plumes lithosphere mantle geodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Artamonov and B. P. Zolotarev, “Tectonics and magmatism of intraplate oceanic rises and the hot-spot hypothesis,” Geotectonics 42, 64–79 (2008).CrossRefGoogle Scholar
  2. 2.
    Igneous Rocks, Ed. by O. A. Bogatikov (Nauka, Moscow, 1983) [in Russian].Google Scholar
  3. 3.
    E. Bonatti, “Origin of the large fracture zones offsetting the Mid-Atlantic Ridge,” Geotectonics 30, 430–440 (1996).Google Scholar
  4. 4.
    A. F. Grachev, “Mantle plumes and problems of geodynamics,” Izv., Phys. Solid Earth 36, 263–294 (2000).Google Scholar
  5. 5.
    L. N. Kogarko and A. M. Asavin, “Regional features of primary alkaline magmas of the Atlantic Ocean,” Geochem. Int. 45, 841–857 (2007).CrossRefGoogle Scholar
  6. 6.
    L. N. Kogarko, L. K. Levskii, and N. F. Gushchina, “Isotope sources of hot Spots in the Trindade and Martin Vaz Islands, Southwestern Atlantic,” Dokl. Earth Sci. 393, 1116–1119 (2003).Google Scholar
  7. 7.
    A. A. Peive, “Linear volcanic chains in oceans: Possible formation mechanisms,” Geotectonics 41, 281–280 (2007).CrossRefGoogle Scholar
  8. 8.
    A. A. Peyve, “Tectonics and magmatism in eastern South America and the Brazil basin of the Atlantic in the Phanerozoic,” Geotectonics 44, 60–75 (2010).CrossRefGoogle Scholar
  9. 9.
    A. A. Peyve and S. G. Skolotnev, “Systematic variations in the composition of volcanic rocks in tectonomagmatic seamount chaines in the Brazil Basin,” Geochem. Int. 52, 111–130 (2014).CrossRefGoogle Scholar
  10. 10.
    Yu. M. Pushcharovsky, “First-order linear tectonovolcanic ridges in oceans,” Geotectonics 45, 101–112 (2011).CrossRefGoogle Scholar
  11. 11.
    S. G. Skolotnev, “The nature of the volcanites diversity of the Mid-Atlantic Ridge equatorial part,” Prostranstvo Vremya 4 (1), 6–42 (2013). http://www.j-spacetime.com/actual%20content/t4v1/2227-9490e-aprovr_e-ast4-1. 2013.25.php.Google Scholar
  12. 12.
    S. G. Skolotnev, M. E. Bylinskaya, L. A. Golovina, and I. S. Ipat’eva, “First data on the age of rocks from the central part of the Vitoria–Trindade Ridge (Brazil Basin, South Atlantic),” Dokl. Earth Sci. 437, 316–322 (2011).CrossRefGoogle Scholar
  13. 13.
    S. G. Skolotnev, M. E. Bylinskaya, L. A. Golovina, and I. S. Ipat’eva, “The origin of Bahia seamounts (Brazil Basin, South Atlantic) in connection to new data on their age,” Dokl. Earth Sci. 443, 444–540 (2012).CrossRefGoogle Scholar
  14. 14.
    S. G. Skolotnev, A. A. Peive, and A. E. Eskin, “New data on the structure of the Bahia seamounts (Western Portion Brazil basin, South Atlantic Ocean),” Dokl. Earth Sci. 435, 1581–1585 (2010).CrossRefGoogle Scholar
  15. 15.
    S. G. Skolotnev, A. A. Peive, A. E. Eskin, V. V. Petrova, and I. S. Patina, “New data on the rock composition of the Bahia Seamounts (Brazil Basin, South Atlantic Ocean),” Dokl. Earth Sci. 435, 1569–1574 (2010).CrossRefGoogle Scholar
  16. 16.
    S. G. Skolotnev, A. A. Peyve, E. V. Ivanova, I. O. Murdmaa, O. V. Levchenko, and M. E. Bylinskaya, “New data on composition and structure of the Pernambuco Seamounts, Brazil basin, south Atlantic Region,” Dokl. Earth Sci. 443, 330–336 (2012).CrossRefGoogle Scholar
  17. 17.
    S. G. Skolotnev, A. A. Peyve, E. V. Ivanova, I. O. Murdmaa, O. V. Levchenko, and O. B. Dmitrenko, “First data about the geochemistry and geological structure of underwater seamounts between Ascension and Bode Verde transform fracture zones in the Brazilian Basin (South Atlantic),” Dokl. Earth Sci. 442, 56–62 (2012).CrossRefGoogle Scholar
  18. 18.
    S. G. Skolotnev, A. A. Peyve, and N. N. Turko, “New data on the structure of the Vitoria–Trindade seamount chain (western Brazil basin, South Atlantic),” Dokl. Earth Sci. 431, 435–440 (2010).CrossRefGoogle Scholar
  19. 19.
    A. V. Travin, D. S. Yudin, A. G. Vladimirov, S. V. Khromykh, N. I. Volkova, A. S. Mekhonoshin, and T. B. Kolotilina, “Thermochronology of the Chernorud granulite zone, Ol’khon region, western Baikal area,” Geochem. Int. 47, 1100–1106 (2009).CrossRefGoogle Scholar
  20. 20.
    V. P. Utkin, “Role of strike-slip faulting of the oceanic lithosphere in the formation of Pacific volcanic belts,” Dokl. Earth Sci. 409, 692–696 (2006).CrossRefGoogle Scholar
  21. 21.
    C. J. Allegre, J.-P. Poirier, E. Humler, and A. W. Hofmann, “The chemical composition of the Earth,” Earth Planet. Sci. Lett. 134, 515–544 (1995).CrossRefGoogle Scholar
  22. 22.
    F. F. Almeida, Geologia e Petrologia do Trindade (Lepto. Nac. Producao. Mineral. DNPM, 1961) [in Portuguese].Google Scholar
  23. 23.
    D. L. Anderson, “The thermal state of the upper mantle: No role for mantle plumes,” Geophys. Res. Lett. 27, 3623–3626 (2000).CrossRefGoogle Scholar
  24. 24.
    C. Bonadiman, L. Beccaluva, M. Coltorti, and F. Siena, “Kimberlite-like metasomatism and ‘garnet signature’ in spinel-peridotite xenoliths from Sal, Cape Verde archipelago: Relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere?,” J. Petrol. 46, 2465–2493 (2005).CrossRefGoogle Scholar
  25. 25.
    P. C. Bryan, “The Bahia Seamounts: test of a hotspot model and a preliminary South American Late Cretaceous to Tertiary Apparent Polar Wander Path,” Tectonophysics 241, 317–340 (1995).CrossRefGoogle Scholar
  26. 26.
    S. C. Cande and D. V. Kent, “A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic,” J. Geophys. Res.: Solid Earth 97, 13917–13951 (1992).CrossRefGoogle Scholar
  27. 27.
    N. Z. Cherkis, D. A. Chayes, and L. C. Costa, “The bathymetry and distribution of the Bahia Seamounts, Brazil Basin,” Mar. Geol. 103, 335–347 (1992).CrossRefGoogle Scholar
  28. 28.
    U. G. Cordani, “Potassium-argon ages of rocks from the Brazilian South Atlantic Islands,” in IUGS-UNESCO Symposium on Continental drift, Montevideo, Uruguay (1967), pp. 146–150.Google Scholar
  29. 29.
    U. G. Cordani and A. Blazekovic, “Idades radiometricas das rochas vulcanicas dos Abrolhos,” in Anais XXIV Congr. Bras. Geol. Soc., Brasilia (1970), pp. 265–270.Google Scholar
  30. 30.
    V. Courtillott, A. Davaille, J. Besse, and J. Stock, “Three distinct types of hotspots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).CrossRefGoogle Scholar
  31. 31.
    S. T. Crough, “Hotspot swells,” Ann. Rev. Earth Planet. Sci. 11, 165–193 (1983).CrossRefGoogle Scholar
  32. 32.
    D. J. De Paolo and M. Manga, “Deep origin of hotspots—the mantle plume model,” Science 300, 920–921 (2003).CrossRefGoogle Scholar
  33. 33.
    R. Doucelance, S. Escrig, and M. Moreira, “Pb–Sr–He and trace element geochemistry of the Cape Verde Archipelago,” Geochim. Cosmochim. Acta 67, 3717–3733 (2003).CrossRefGoogle Scholar
  34. 34.
    J. Douglass, J. G. Shilling, and D. Fontignie, “Plumeridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40–55° S),” J. Geophys. Res.: Solid Earth 104, 2941–2962 (1999).CrossRefGoogle Scholar
  35. 35.
    R. A. Duncan and M. A. Richards, “Hotspots, mantle plumes, flood basalts and true polar wander,” Rev. Geophys. 29, 31–50 (1991).CrossRefGoogle Scholar
  36. 36.
    D. Epp and N. C. Smoot, “Distribution of seamounts in the North Atlantic,” Nature 337, 254–257 (1989).CrossRefGoogle Scholar
  37. 37.
    J. D. Fairhead and W. Marjorie, “Plate tectonics processes in the South Atlantic ocean: Do we need deep mantle plumes?,” in Plates, Plumes and Paradigms, Vol. 388 of Geol. Soc. Am., Spec. Pap. Ed. by R.G. Foulger, H. J. Natland, C. D. Presnall, and L. D. Anderson (2005), pp. 537–553.Google Scholar
  38. 38.
    R. V. Fodor and B. B. Hanan, “Geochemical evidence for the Trindade hotspot trace: Columbia seamount ankaramite,” Lithos 51, 293–304 (2000).CrossRefGoogle Scholar
  39. 39.
    D. Fontignie and J. G. Schilling, “Mantle heterogeneities beneath the South Atlantic: A Nd–Sr–Pb isotope study along the Mid-Atlantic Ridge (3°–46° S),” Earth Planet. Sci. Lett. 142, 109–121 (1996).CrossRefGoogle Scholar
  40. 40.
    G. R. Fougler and J. H. Natland, “Is ‘hotspot volcanism’ a consequence of plate tectonics?,” Science 300, 921–922 (2003).CrossRefGoogle Scholar
  41. 41.
    S. A. Gibson, R. N. Thompson, O. H. Leonardos, A. P. Dickin, and J. G. Mitchell, “The Late Cretaceous impact of the Trindade mantle plume: Evidence from large-volume, mafic potassic magmatism in SE Brazil,” J. Petrol. 36, 189–229 (1995).CrossRefGoogle Scholar
  42. 42.
    R. Giorgio, M. Mazzucchelli, V. A. V. Girardi, R. Vannucci, and M. A. Barieri, “Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: Evidence from mantle xenolith,” Contrib. Mineral. Petrol. 138, 308–325 (2000).CrossRefGoogle Scholar
  43. 43.
    B. B. Hanan, R. H. Kingsley, and J. G. Schilling, “Pb isotope evidence in the South Atlantic for migrating ridge interactions,” Nature 322, 137–144 (1986).CrossRefGoogle Scholar
  44. 44.
    S. R. Hart, “Heterogeneous mantle domains: Signatures, genesis and mixing chronologies,” Earth Planet. Sci. Lett. 90, 273–296 (1988).CrossRefGoogle Scholar
  45. 45.
    C. F. Hieronymus and D. Bercavici, “Non-hotspot formation of volcanic chains: control of tectonic and flexural stress on magma transport,” Earth Planet. Sci. Lett. 181, 539–554 (2000).CrossRefGoogle Scholar
  46. 46.
    K. Hoerlne, G. Tilton, and H. U. Schminke, “Sr–Nd–Pb isotopic evolution of Gran Canaria: Evidence for shallow enriched mantle beneath the Canary Islands,” Earth Planet. Sci. Lett. 106, 44–64 (1991).CrossRefGoogle Scholar
  47. 47.
    A. W. Hoffman, “Chemical differentiation of the Earth: The relationships between mantle, continental crust, and oceanic crust,” Earth Planet. Sci. Lett. 90, 297–314 (1991).CrossRefGoogle Scholar
  48. 48.
    G. Ito, J. Lin, and W. Gable, “Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic ridge,” Earth Planet. Sci. Lett. 144, 53–74 (1996).CrossRefGoogle Scholar
  49. 49.
    H. Kawabata, T. Hanyu, Q. Chang, J. Kimura, A. Nichols, and Y. Tatsumi, “The petrology and geochemistry of St. Helena alkali basalts: Evaluation of the oceanic crust-recycling model for HIMU OIB,” J. Petrol. 52, 791–838 (2011).CrossRefGoogle Scholar
  50. 50.
    A. P. Koppers, J. P. Morgan, J. W. Morgan, and H. Staudigel, “Testing the fixed hotspot hypothesis using 40Ar/39Ar age progression along seamounts trails,” Earth Planet. Sci. Lett. 185, 237–252 (2001).CrossRefGoogle Scholar
  51. 51.
    A. P. Le Roex, H. Dick, L. Gulen, A. M. Reid, and A. J. Erlank, “Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5° and 51° S: Evidence for geochemical enrichment,” Geochim. Cosmochim. Acta 51, 541–555 (1987).CrossRefGoogle Scholar
  52. 52.
    L. S. Marques, N. C. Mabel, E. R. Ulbrich, and G. T. Colombo, “Petrology, geochemistry and Sr–Nd isotopes of the Trindade and Martin Vaz volcanic rocks Southern Atlantic Ocean,” J. Volcan. Geotherm. Res. 93, 191–216 (1999).CrossRefGoogle Scholar
  53. 53.
    H. Möller, Magma Genesis and Mantle Sources at the Mid-Atlantic Ridge East of Ascension Island, Doctoral Dissertation (Christian-Alberts Univ., Kiel, 2002).Google Scholar
  54. 54.
    R. Montelli, G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and S. Hung, “Finite-frequency tomography reveals a variety of plumes in the mantle,” Science 303, 338–343 (2004).CrossRefGoogle Scholar
  55. 55.
    W. J. Morgan, “Convective plumes in the lower mantle,” Nature 230, 42–43 (1971).CrossRefGoogle Scholar
  56. 56.
    W. J. Morgan, “Hotspot tracks and early rifting of the Atlantic,” Tectonophysics 94, 123–139 (1983).CrossRefGoogle Scholar
  57. 57.
    D. Nürnberg and R. D. Müller, The tectonic evolution of the South Atlantic from Late Jurassic to present,” Tectonophysics 191, 27–53 (1991).Google Scholar
  58. 58.
    J. M. O’Connor, P. Stoffers, P. van den Bogaard, and M. McWilliams, “First seamount age evidence for significantly slower African plate motion since 19 to 30 Ma,” Earth Planet. Sci. Lett. 171, 575–589 (1999).CrossRefGoogle Scholar
  59. 59.
    J. Phipps Morgan, W. J. Morgan, and E. Price, “Hotspots melting generates both hotspot volcanism and a hotspot swell?,” J. Geophys. Res.: Solid Earth 100, 8045–8062 (1995).CrossRefGoogle Scholar
  60. 60.
    K. Rankenburg, J. C. Lassiter, and G. Brey, “The role of continental crust and lithospheric mantle in the genesis of Cameroon volcanic line lavas: Constraints from isotopic variation in lavas and megacrysts from the Biu and Jos Plateaux,” J. Petrol. 46, 169–190 (2005).CrossRefGoogle Scholar
  61. 61.
    M. Regelous, Ya. Niu, W. Abouchami, and P. R. Castillo, “Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26° S,” Lithos 112, 57–72 (2009).CrossRefGoogle Scholar
  62. 62.
    J. Ritsema and R. M. Allen, “The elusive mantle plume,” Earth Planet. Sci. Lett. 207, 1–12 (2003).CrossRefGoogle Scholar
  63. 63.
    R. L. Rudnick and S. Gao, “Composition of the continental crust,” in The Crust, Vol. 3 of Treatise on Geochemistry, Ed. by R. L. Rudnick (Elsevier, Amsterdam, 2003), pp. 1–64.CrossRefGoogle Scholar
  64. 64.
    D. T. Sandwell and W. H. F. Smith, “Marine Gravity Anomaly from Geosat and ERS-1 satellite altimetry,” J. Geophys. Res.: Solid Earth 102, 10039–10054 (1997).CrossRefGoogle Scholar
  65. 65.
    R. N. Santos and L. S. Marques, “Investigation of 238U–230Th–226Ra and 232Th–228Ra–228Th radioactive disequilibria in volcanic rocks from Trindade and Martin Vaz Islands (Brazil; Southern Atlantic Ocean),” J. Volcanol. Geotherm. Res. 161, 215–233 (2007).CrossRefGoogle Scholar
  66. 66.
    J. G. Schilling, G. Thompson, R. Kingsley, and S. Humphris, “Hotspot-migrating ridge interaction in the South Atlantic,” Nature 313, 187–191 (1985).CrossRefGoogle Scholar
  67. 67.
    W. Siebel, R. Becchio, F. Volker, M.A.F. Hansen, J. Viramonte, R. Trumbull, G. Haase, and M. Zimmer, “Trindade and Martín Vaz Islands, South Atlantic: Isotopic (Sr, Nd, Pb) and trace element constraints on plume related magmatism,” J. South Am. Earth Sci. 13, 79–103 (2000).CrossRefGoogle Scholar
  68. 68.
    B. Steinberger, “Plumes in convicting mantle: models and observations for individual hotspots,” J. Geophys. Res.: Solid Earth 105, 11127–11152 (2000).CrossRefGoogle Scholar
  69. 69.
    S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–435.Google Scholar
  70. 70.
    J. C. Van Decar, D. E. James, and M. Assumpcao, “Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces,” Nature 378, 25–31 (1995).CrossRefGoogle Scholar
  71. 71.
    B. L. Weaver, D. A. Wood, J. Tarney, and J. L. Joron, “Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha,” in Alkaline Igneous Rocks, Vol. 30 of Geol. Soc. Spec. Publ., Ed. by J. G. Fitton and B. G. J. Upton (London, 1987), pp. 253–267.Google Scholar
  72. 72.
    W. M. White and A. W. Hofmann, “Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution,” Nature 296, 821–825 (1982).CrossRefGoogle Scholar
  73. 73.
    I. S. Williams, “Applications of microanalytical techniques to understanding mineralizing processes,” Rev. Econ. Geol. 7, 1–35 (1998).CrossRefGoogle Scholar
  74. 74.
    J. T. Wilson, “A possible origin of the Hawaiian Islands,” Can. J. Phys. 41, 863–870 (1963).CrossRefGoogle Scholar
  75. 75.
    A. Zindler and S. R. Hart, “Chemical geodynamics,” Ann. Rev. Earth Planet. Sci. 14, 493–571 (1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations