, Volume 50, Issue 1, pp 1–20 | Cite as

Collision and mountain building

  • V. G. Trifonov


The spatial, chronological, and genetic relationships of recent (Late Alpine) collisions to mountain building are considered at three levels of scale: (i) in separate zones of the Arabian–Caucasus segment of the Alpine–Himalayan Orogenic Belt, (ii) throughout the central segment of this belt from the Alps to the Himalalayas, and (iii) in Central Asia and other mountain belts of continents. Three stages of mountain building are distinguished at all three levels. The first stage starts with widespread collision and similar plate interactions from the end of the Eocene to the middle Miocene and is expressed in the formation of uplifts, commonly no higher than the moderately elevated level in regions that concentrate deformations of transverse shortening induced by compression. The second short stage, which embraces the Pliocene–Quaternary and occasionally the end of the Miocene, differs in general, though differentiated in the value and intensification of vertical movements, when the height of mountains increases by 2–3 times. Elevations are spread over certain platform territories and even frameworks of rift zones. This is related not so much to the intensity of compression and shortening as to the compositional transformation of the upper mantle and the lower crust, leading to their decompaction. Comparison with the Hercynian and Caledonian orogenic stages shows that the second phase, predetermined by widespread collision, reflects a more important geodynamic event expressed in a change of the global plate interaction system and its deep-seated sources.


collision mountain building intensification of vertical motions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1993) [in Russian].Google Scholar
  2. 2.
    E. V. Artyushkov, “Abrupt continental lithosphere weakening as a precondition for fast and large-scale tectonic movements,” Geotectonics 37, 107–123 (2003).Google Scholar
  3. 3.
    E. V. Artyushkov, “Neotectonic crustal uplifts as a consequence of mantle fluid infiltration into the lithosphere,” Russ. Geol. Geophys. 53, 566–582 (2012).CrossRefGoogle Scholar
  4. 4.
    A. T. Aslanyan, Regional Geology of Armenia (Aipetrat, Yerevan, 1958) [in Russian].Google Scholar
  5. 5.
    D. M. Bachmanov, “Age zoning of coarse molasse in the Outer Zagros and migration of the recent orogeny,” Geotectonics 35, 505–509 (2001).Google Scholar
  6. 6.
    B. M. Bogachkin, Tectonic Evolution of the Gorny Altai during the Cenozoic (Nauka, Moscow, 1981) [in Russian].Google Scholar
  7. 7.
    Greater Caucasus in the Alpine Epoch, Ed. by Yu. G. Leonov (GEOS, Moscow, 2007) [in Russian].Google Scholar
  8. 8.
    A. A. Gabrielyan, Paleogene and Neogene of the Armenian SSR (Izd. Akad. Nauk Arm. SSR, Yerevan, 1964) [in Russian].Google Scholar
  9. 9.
    P. D. Gamkrelidze and I. P. Gamkrelidze, Nappes on the Southern Slope of Greater Caucasus, Vol. 57 of Tr. Geol. Inst. Akad. Nauk Gruz. SSR. Nov. Ser. (Metsniereba, Tbilisi, 1965) [in Russian].Google Scholar
  10. 10.
    I. I. Grekov, S. G. Korsakov, M. A. Kompaniets, V. A. Lavrishchev, A. N. Pis’mennyi, I. N. Semenukha, “Geoelectrical model of the crust in the Russian sector of Greater Caucasus,” in Obshchie i regional’nye problemy tektoniki i geodinamiki (GEOS, Moscow, 2008), Vol. 1, pp. 239–244.Google Scholar
  11. 11.
    E. V. Devyatkin, Cenozoic Deposits and Neotectonics of the Southeastern Altai (Nauka, Moscow, 1965) [in Russian].Google Scholar
  12. 12.
    J. F. Dewey and J. M. Bird, “Mountain belts and the new global tectonics,” J. Geophys. Res. 75, 2625–2647 (1970). doi 10.1029/JB075i014p02625CrossRefGoogle Scholar
  13. 13.
    A. V. Ershov and A. M. Nikishin, “Recent Geodynamics of the Caucasus–Arabia–East Africa Region,” Geotectonics 38, 123–136 (2004).Google Scholar
  14. 14.
    D. Zhao, F. Pirajno, N. L. Dobretsov, and L. Liu, “Mantle structure and dynamics under East Russia and adjacent regions,” Russ. Geol. Geophys. 51, 925–938 (2010).CrossRefGoogle Scholar
  15. 15.
    V. S. Zykin, Stratigraphy and Evolution of the Natural Environment and Climate in the Southern West Siberia during the Late Cenozoic (Akad. Izd. Geo, Novosibirsk, 2012) [in Russian].Google Scholar
  16. 16.
    V. S. Zykin and A. Yu. Kazanskii, “Stratigraphy and paleomagnetism of the Cenozoic (pre-Quaternary) deposits in the Chuya depression, Gorny Altai,” Geol. Geofiz. 36 (10), 75–90 (1995).Google Scholar
  17. 17.
    The Neotectonic Map of Southern USSR, Scale 1: 1000000, Ed. by L. P. Polkanova (VNIGNI, Leningrad, 1971).Google Scholar
  18. 18.
    A. L. Knipper, A. A. Savel’ev, and M. Rukie, “Ophiolitic association of the Northwestern Syria,” Geotektonika, No. 1, 92–104 (1988).Google Scholar
  19. 19.
    A. I. Kozhurin, “Active geodynamics of the northwestern sector of the Pacific tectonic belt from the studies of active faults,” Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2013).Google Scholar
  20. 20.
    M. L. Kopp and I. G. Shcherba, “Caucasian basin in Paleogene,” Geotektonika, No. 2, 29–50 (1998).Google Scholar
  21. 21.
    G. V. Krasnopevtseva, Deep Structure of the Caucasus Seismoactive Region (Nauka, Moscow, 1984) [in Russian].Google Scholar
  22. 22.
    N. B. Kuznetsov, A. A. Soboleva, E. L. Miller, O. V. Udoratina, G. Gehrels, and T. V. Romanyuk, “First U–Pb datings of detrital zircons from Middle and Upper Paleozoic sandstones of the Polar Urals: Testing the regional tectonic models,” Dokl. Earth Sci. 451, 692–697 (2013).CrossRefGoogle Scholar
  23. 23.
    V. A. Lebedev, S. N. Bubnov, O. Z. Dudauri, and G. T. Vashakidze, “Geochronology of Pliocene volcanism in the Dzhavakheti Highland (the Lesser Caucasus). Part 2: Eastern part of the Dzhavakheti Highland. Regional geological correlation,” Stratigr. Geol. Correl. 16, 553–574 (2008).CrossRefGoogle Scholar
  24. 24.
    Yu. G. Leonov, “The recent activation and Alpine orogenesis,” Geotektonika, No. 2, 3–14 (1972).Google Scholar
  25. 25.
    Yu. G. Leonov, Tectonic Nature of the Devonian Orogeny (Nedra, Moscow, 1976) [in Russian].Google Scholar
  26. 26.
    Yu. G. Leonov, “Global orogenic events: Orogenic periods and tectogenesis epochs,” in Problemy global’noi korrelyatsii geologicheskikh yavlenii (Nauka, Moscow, 1980), pp. 33–71.Google Scholar
  27. 27.
    A. V. Marinin and L. M. Rastsvetaev, “Structural parageneses of Northwestern Caucasus,” in Problemy tektonofiziki (IFZ RAN, Moscow, 2008), pp. 191–224.Google Scholar
  28. 28.
    E. E. Milanovskii, Neotectonics of the Caucasus (Nedra, Moscow, 1968) [in Russian].Google Scholar
  29. 29.
    E. E. Milanovskii and N. V. Koronovskii, Orogenic Volcanism and Tectonics of the Eurasian Alpine Belt (Nedra, Moscow, 1973) [in Russian].Google Scholar
  30. 30.
    E. E. Milanovskii and V. E. Khain, Geologic Structure of Caucasus (Mosk. Gos. Univ., Moscow, 1963) [in Russian].Google Scholar
  31. 31.
    A. A. Mossakovskii, Orogenic Structures and Volcanism of the Eurasian Paleozoides, Vol. 268 of Tr. Geol. Inst. Akad. Nauk SSSR (Nauka, Moscow, 1975) [in Russian].Google Scholar
  32. 32.
    Neotectonics, Modern Geodynamics, and Seismic Hazard of Syria, Ed. by V. G. Trifonov (GEOS, Moscow, 2012) [in Russian].Google Scholar
  33. 33.
    E. Ohtani and D. Zhao, “The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge,” Russ. Geol. Geophys. 50, 1073–1072 (2009).CrossRefGoogle Scholar
  34. 34.
    D. I. Panov, “Structural-facial zoning of Greater Caucasus at the pre-Alpine stage of evolution (Early and Middle Jurassic),” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 63 (1), 13–24 (1988).Google Scholar
  35. 35.
    D. I. Panov, “Tectonic structure of the Jurassic terrigenous complex of Greater Caucasus: Age and Mechanism of formation,” Sb. Nauchn. Tr. Sev.-Kavk. Gos. Tekhn. Univ., Ser. Tekton. Geodin., No. 1, 60–70 (2002).Google Scholar
  36. 36.
    L. M. Parfenov, A. V. Prokop’ev, and V. B. Spektor, “Relief of the Earth’s surface and the history of its formation,” in Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 12–32.Google Scholar
  37. 37.
    V. N. Puchkov, Paleogeodynamics of the Southern and Middle Urals (Dauriya, Ufa, 2000) [in Russian].Google Scholar
  38. 38.
    V. N. Puchkov, Geology of the Urals and Cis-Uralian Region: Topical Issues of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].Google Scholar
  39. 39.
    Yu. M. Pushcharovskii and D. Yu. Pushcharovskii, Geology of the Earth’s Mantle (GEOS, Moscow, 2010) [in Russian].Google Scholar
  40. 40.
    T. V. Romanyuk, “The Late Cenozoic geodynamic evolution of the central segment of the Andean subduction zone,” Geotectonics 43, 305–323 (2009).CrossRefGoogle Scholar
  41. 41.
    Yu. V. Sayadyan, The Recent Geological History of Armenia (Gitutyun, Yerevan, 2009) [in Russian].Google Scholar
  42. 42.
    V. N. Smirnov, “Northeastern Eurasia,” in Noveishaya tektonika, geodinamika i seismichnost’ Severnoi Evrazii, Ed. by A. F. Grachev (OIFZ RAN, Moscow, 2000), pp. 120–133.Google Scholar
  43. 43.
    S. Yu. Sokolov and V. G. Trifonov, “Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian–Afar Superplume and the Alpine–Himalayan Belt,” Geotectonics 46, 171–184 (2012).CrossRefGoogle Scholar
  44. 44.
    S. N. Sychev, “Structure and evolution of the Main Uralian Fault zone: A case study of the southern part of the Polar Urals,” Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2015).Google Scholar
  45. 45.
    V. G. Trifonov, E. V. Artyushkov, A. E. Dodonov, D. M. Bachmanov, A. V. Mikolaichuk, and F. A. Vishnyakov, “Pliocene–Quaternary orogeny in the Central Tien Shan,” Russ. Geol. Geophys. 49, 98–112 (2008).CrossRefGoogle Scholar
  46. 46.
    V. G. Trifonov, T. P. Ivanova, and D. M. Bachmanov, “Evolution of the central Alpine-Himalayan belt in the Late Cenozoic,” Russ. Geol. Geophys. 53, 221–233 (2012).CrossRefGoogle Scholar
  47. 47.
    V. G. Trifonov, T. P. Ivanova, and D. M. Bachmanov, “Recent mountain building of the central Alpine–Himalayan Belt,” Geotectonics 46, 315–332 (2012).CrossRefGoogle Scholar
  48. 48.
    V. G. Trifonov, O. V. Soboleva, R. V. Trifonov, and G. A. Vostrikov, Modern Geodynamics of the Alpine–Himalayan Collision Belt (GEOS, Moscow, 2002) [in Russian].Google Scholar
  49. 49.
    I. V. Chernyshev, V. A. Lebedev, M. M. Arakelyants, R. T. Jrbashyan, and Yu. G. Gukasyan, “Quaternary geochronology of the Aragats volcanic center, Armenia: Evidence from K–Ar dating,” Dokl. Earth Sci. 384, 393–398 (2002).Google Scholar
  50. 50.
    V. I. Shevchenko, T. V. Guseva, A. A. Lukk, A. V. Mishin, M. T. Prilepin, R. E. Reilinger, M. W. Hamburger, A. G. Shempelev, and S. L. Yunga, “Recent geodynamics of the Caucasus Mountains from GPS and seismological evidence,” Izv., Phys. Solid Earth 35, 691–704 (1999).Google Scholar
  51. 51.
    S. S. Shul’ts, “Modern zones of ororgenesis, their tectonic features, and position in the general structure of the Earth’s crust,” Nauchn. Dokl. Vyssh. Shkoly., Geol.-Geogr. Nauki, No. 1, 23–41 (1958).Google Scholar
  52. 52.
    I. G. Shcherba, Stages and Phases of the Cenozoic Evolution of the Alpine Zone (Nauka, Moscow, 1993) [in Russian].Google Scholar
  53. 53.
    E. M. Shcherbakova, Ancient Glaciation of Greater Caucasus (Mosk. Gos. Univ., Moscow, 1973) [in Russian].Google Scholar
  54. 54.
    F. L. Yakovlev, “Construction of the relief of the cover–basement interface beneath Greater Caucasus on the basis of defining the values of folded structures’ shortening,” in Oblasti aktivnogo tektogeneza v sovremennoi i drevnei istorii Zemli. Materialy 39-go tektonicheskogo soveshchaniya (GEOS, Moscow, 2006), Vol. 2, pp. 411–415.Google Scholar
  55. 55.
    F. L. Yakovlev, “The first version of 3D model of sedimentary cover structure in the Northwestern Caucasus from the data of folded deformation field,” in Problemy tektonofiziki (IFZ RAN, Moscow, 2008), pp. 335–345.Google Scholar
  56. 56.
    F. L. Yakovlev, “Reconstruction of the balanced structure of the eastern part of Alpine Greater Caucasus using data from quantitative analysis of linear folding: Case study,” Vestn. KRAUNTs, Nauki Zemle, No. 1, 191–214 (2012).Google Scholar
  57. 57.
    S. A. Adamia, G. Zakariadze, T. Chkhotua, N. Sadradze, N. Tsereteli, A. Chabukiani, S. Gventsadze, “Geology of the Caucasus: A review,” Turkish J. Earth Sci. 20, 489–544 (2011).Google Scholar
  58. 58.
    J. C. Aitchison, J. R. Ali, and A. V. Davis, “When and where did India and Asia collide?,” J. Geophys. Res.: Solid Earth 112, 1–19 (2007).Google Scholar
  59. 59.
    A. C. Akinci, U. C. Ünlügenç, and A. H. F. Robertson, “Sedimentary evidence for the Cenozoic development of the NE Anatolian Thrust Belt,” in 8th Iternational Symposium on Eastern Mediterranean Geology. Abstracts, Mugla, Turkey, 2014, p. 38.Google Scholar
  60. 60.
    E. V. Artyushkov and A. Hofmann, “The Neotectonic crustal uplift on the continents and its possible mechanisms. The case of Southern Africa,” Surv. Geophys. 15, 515–544 (1998).Google Scholar
  61. 61.
    D. I. Axelrod, “Post-Pliocene uplift of the Sierra Nevada, California,” Bull. Geol. Soc. Am., 73, 183–198 (1962).CrossRefGoogle Scholar
  62. 62.
    D. M. Bachmanov, V. G. Trifonov, Kh. T. Hessami, A. I. Kozhurin, T. P. Ivanova, E. A. Rogozhin, M. C. Hademi, and F. H. Jamali, “Active faults in the Zagros and central Iran,” Tectonophysics 380, 221–242 (2004).CrossRefGoogle Scholar
  63. 63.
    J. C. Behrendt and A. Cooper, “Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic Rift System and a speculation on possible climatic forcing,” Geology 19, 315–319 (1991).CrossRefGoogle Scholar
  64. 64.
    M. Berberian, Contribution to the Seismotectonics of Iran (Geol. Surv. Iran, Tehran, 1976), Pt. 1.Google Scholar
  65. 65.
    H. Çelik, “The effect of linear coarse-grained slope channel bodies on the orientations of fold developments: a case study from the Middle Eocene–Lower Oligocene Kirkgeçit Formation, Elazig, Eastern Turkey,” Turkish J. Earth Sci. 21, 1–21 (2012).Google Scholar
  66. 66.
    M. Coltorti and C. D. Ollier, “Geomorphic and tectonic evolution of the Ecuadorian Andes,” Geomorphology 32, 1–19 (2000).CrossRefGoogle Scholar
  67. 67.
    B. T. Cronin, A. J. Hartley, H. Celik, A. Hurst, I. Türkmen, and E. Kerey, “Equilibrium profile development in graded deep-water slopes: Eocene, Eastern Turkey,” J. Geol. Soc. (London, U.K.) 157, 943–955 (2000).CrossRefGoogle Scholar
  68. 68.
    B. T. Cronin, H. Celik, A. Hurst, and I. Turkmen, “Mud prone entrenched deep-water slope channel complexes from the Eocene of eastern Turkey,” in Submarine Slope Systems: Processes and Products, Vol. 244 of Geol. Soc. London, Spec. Publ. (London, 2005), pp. 155–180.Google Scholar
  69. 69.
    J. De Grave, M. M. Buslov, and H. Van der Haute, “Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology,” J. Asian Earth Sci. 29, 188–204 (2007).CrossRefGoogle Scholar
  70. 70.
    G. P. Eaton, “Topography and origin of the Southern Rocky Mountains and Alvarado Ridge,” in Continental extensional tectonics, Vol. 28 of Geol. Soc. London, Spec. Pap., Ed. by M. P. Coward, J. F. Dewey, and P. L. Hancock., (London, 1987) pp. 355–369.Google Scholar
  71. 71.
    K. A. Farley, M. E. Rusmore, and S. W. Bogue, “Post-10 Myr uplift and exhumation of the Northern Coast Mountains, British Columbia,” Geology 29, 99–102 (2001).CrossRefGoogle Scholar
  72. 72.
    Y. Fukao, S. Widiyantoro, and M. Obayashi, “Stagnant slabs in the upper and lower mantle transition region,” Rev. Geophys. 39, 291–323 (2001).CrossRefGoogle Scholar
  73. 73.
    Geological Map of Iran. Scale 1:1 000 000, 6 sheets (N.I.O.C. Explor. Prod., Tehran, 1975–1976).Google Scholar
  74. 74.
    J. Golonka, “Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic,” Tectonophysics 381, 235–273 (2004).CrossRefGoogle Scholar
  75. 75.
    F. Gomez, M. Khawlie, C. Tabet, A. N. Darkal, K. Khair, M. Barazangi, “Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria,” Earth Planet. Sci. Lett. 241, 913–931 (2006).CrossRefGoogle Scholar
  76. 76.
    R. G. Gordon, “The plate tectonic approximation: plate nonrigidity, diffuse plate boundaries, and global plate reconstructions,” Annu. Rev. Earth Planet. Sci 26, 615–642 (1998).CrossRefGoogle Scholar
  77. 77.
    S. E. Holingsworth and R. W. R. Rutland, “Studies of Andean Uplift. Part 1. Post-Cretaceous evolution of the San Bartelo area, North Chile,” Geol. J. 6, 49–62 (1968).CrossRefGoogle Scholar
  78. 78.
    S. D. Jacobsen, S. Demouchy, J. D. Frost, T. B. Ballaran, and J. Kung, “A systematic study of OH in hydrous wadsleite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth’s interior,” Am. Mineral. 90, 67–70 (2005).CrossRefGoogle Scholar
  79. 79.
    A. Karakhanian, A. Avagyan, M. Avanessyan, M. Elashvili, T. Gogoradze, Z. Javakhishvili, A. Korzhenkov, S. Philip, and E. Vergino “Armenia-to-Georgia trans-boundary fault: An example of international cooperation in the Caucasus,” in AGU Fall Meeting Abstracts, San Francisco, USA, 2012, Abstr. No. S43J-02.Google Scholar
  80. 80.
    A. S. Karakhanian, V. G. Trifonov, H. Philip, A. Avagyan, Kh. Hessami, F. Jamali, M. S. Bayraktutan, H. Bagdassarian, S. Arakelian, V. Davtian, and A. Adilkhanyan, “Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran,” Tectonophysics 380, 189–219 (2004).CrossRefGoogle Scholar
  81. 81.
    S. B. Kroonenberg, J. G. M. Bakker, and M. van der Wiel, “Late Cenozoic uplift and paleogeography of the Colombian Andes: Constraints on the development of the high-Andean biota,” Geol. Mijnbouw 69, 279–290 (1990).Google Scholar
  82. 82.
    K. A. Krylov, S. A. Silantyev, and V. A. Krasheninnikov, “The tectonic structure and evolution of South- Western and Central Cyprus,” in Geological Framework of the Levant, Vol. I: Cyprus and Syria, Ed. by V. A. Krasheninnikov, J. K. Hall, F. Hirsch, Ch. Benjamini, and A. Flexer (Historical Production-Hall, Jerusalem, 2005), pp. 135–164.Google Scholar
  83. 83.
    I. Lucchita, “Late Cenozoic uplift of the Southwestern Colorado Plateau and adjacent lower Colorado River region,” Tectonophysics 61, 63–95 (1979).CrossRefGoogle Scholar
  84. 84.
    S. P. Nitchman, S. J. Caskey, and T. L. Sawyer, “Change in Great Basin tectonics at 3–4 Myr–a hypothesis,” Geol. Soc. Am. Abstr., Cordilleran Sect. 33 (3), 72 (1990).Google Scholar
  85. 85.
    C. D. Ollier, “Mountain uplift and the Neotectonic period,” Ann. Geophys., Suppl. to Vol. 49. No. 1, 437–450 (2006).Google Scholar
  86. 86.
    C. D. Ollier and D. Taylor, “Major geomorphic features of the Kosciusko–Bega region,” BMR J. Aust. Geol. Geophys. 10, 357–362 (1988).Google Scholar
  87. 87.
    T. C. Partridge, “Late Neogene uplift in Eastern and Southern Africa,” in Tectonic Uplift and Climate Change, Ed. by W. F. Ruddiman, (Plenum Press, New York, 1997), pp. 63–86.CrossRefGoogle Scholar
  88. 88.
    T. C. Partridge, “Of diamonds, dinosaurs and diastrophism: 150 Myr of landscape evolution in Southern Africa,” S. Afr. J. Geol 101, 167–184 (1998).Google Scholar
  89. 89.
    G. R. Priest, N. J. M. Woller, G. L. Black, and S. H. Evans, “Overview of the geology of the Central Oregon Cascade Range,” in Geology and Geothermal Resources of the Central Oregon Cascade Range, Vol. 15 of Oregon Dep. Geol. Miner. Ind., Spec. Pap., Ed. by G. R. Priest and B. F. Vogt (1983), pp. 3–28.CrossRefGoogle Scholar
  90. 90.
    A. H. F. Robertson, “Mesozoic–Tertiary tectonic evolution of the eastmost Mediterranean area: integration of marine and land evidence,” in Vol. 160 of Proceedings of the Ocean Drilling Program: Scientific Results, Ed. by A. H. F. Robertson, K. C. Emels, C. Richter, and A. Camerlanghi (College Station, TX, 1998), pp. 97–138.Google Scholar
  91. 91.
    A. Robertson, Ü. C. Unlügenç, N. Inan, and K. Tasli, “The Misis-Andirin Complex: A Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey,” J. Asian Earth Sci. 22, 413–453 (2004).CrossRefGoogle Scholar
  92. 92.
    F. Saroglu, “Age and offset of the North Anatolian fault,” Middle East Tech. Univ. J. Pure Appl. Sci. 21, 65–79 (1988).Google Scholar
  93. 93.
    S. A. Silantyev, M. V. Portnyagin, B. A. Basylev, N. Yu. Bragin, K. G. Koleda, K. A. Krylov, and L. G. Bragina, “The Troodos ophiolite complex (structural para-autochton). Igneous, metamorphic and sedimentary rocks of the Mamonia (structural allochthon),” in Geological Framework of the Levant, Vol. I: Cyprus and Syria, Ed. by V. A. Krasheninnikov, J. K. Hall, F. Hirsch, Ch. Benjamini, and A. Flexer (Historical Production-Hall, Jerusalem, 2005), pp. 7–100.Google Scholar
  94. 94.
    J. R. Smyth, “A crystallographic model for hydrous wadsleyte: An ocean in the Earth’s interior?,” Am. Mineral. 79, 1021–1025 (1994).Google Scholar
  95. 95.
    J. S. Tchalenko and J. Braud, “Seismicity and structure of the Zagros (Iran): The main recent fault between 33° and 35° N,” Philos. Trans. R. Soc. London. 277 (1262), 1–25 (1974).CrossRefGoogle Scholar
  96. 96.
    W. D. Thornbury, Regional Geomorphology of the United States (Wiley, New York, 1965).Google Scholar
  97. 97.
    V. G. Trifonov, D. M. Bachmanov, A. N. Simakova, Ya. I. Trikhunkov, O. Ali, A. S. Tesakov, E. V. Belyaeva, V. P. Lyubin, R. V. Veselovsky, A.-M. Al-Kafri, “Dating and correlation of the Quaternary fluvial terraces in Syria, applied to tectonic deformation in the region,” Quat. Int. 328–329, 74–93 (2014).CrossRefGoogle Scholar
  98. 98.
    V. G. Trifonov, A. E. Dodonov, E. V. Sharkov, D. I. Golovin, I. V. Chernyshev, V. A. Lebedev, T. P. Ivanova, D. M. Bachmanov, M. Rukieh, O. Ammar, H. Minini, A.-M. Al Kafri, and O. Ali, “New data on the Late Cenozoic basaltic volcanism in Syria, applied to its origin,” J. Volcanol. Geotherm. Res. 199, 177–192 (2011).CrossRefGoogle Scholar
  99. 99.
    V. G. Trifonov, V. P. Lyubin, E. V. Belyaeva, V. A. Lebedev, Ya. I. Trikhunkov, A. S. Tesakov, A. N. Simakova, R. V. Veselovsky, A. V. Latyshev, S. L. Presnyakov, T. P. Ivanova, D. V. Ozhereliev, D. M. Bachmanov, S. E. Artyushkov, and S. M. Lyapunov, “Stratigraphic and tectonic settings of Early Paleolithic of North-West Armenia,” Quat. Int. (2015) (in press). doi 10.1016/j.quaint.2015.08.019Google Scholar
  100. 100.
    V. G. Trifonov and S. Yu. Sokolov, “Late Cenozoic tectonic uplift producing mountain building in comparison with mantle structure in the Alpine-Himalayan Belt,” Int. J. Geosci. 5, 497–518 (2014). doi 10.4236/ijg.2014.55047CrossRefGoogle Scholar
  101. 101.
    D. E. Trimble, “Cenozoic tectonic history of the Great Plains contrasted with that of the southern Rocky Mountains: A synthesis,” Mt. Geol. 17, 59–69 (1980) 9.Google Scholar
  102. 102.
    E. H. Walker, “Andean uplift and erosion surfaces near Uncia, Bolivia,” Am. J. Sci. 247, 646–663 (1949).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations