Geotectonics

, Volume 50, Issue 1, pp 35–53 | Cite as

Tectonics and types of riftogenic basins of the Scotia Sea, South Atlantic

  • E. P. Dubinin
  • A. V. Kokhan
  • D. E. Teterin
  • A. L. Grokhol’sky
  • E. S. Kurbatova
  • N. M. Sushchevskaya
Article
  • 90 Downloads

Abstract

Western, central, and eastern provinces are recognized in the Scotia Sea. They are distinguished by their bottom topography, geophysical characteristics, and crustal structure, which record their different origin and evolution. The western province is characterized by the oceanic crust that formed on the West Scotia Ridge, where active spreading may have ceased as a result of a collision between propagating rift and the structural barrier of the thick continental lithosphere of the Falkland Plateau. The central province is a series of blocks mainly composed of continental crust that subsided to various depths depending on the degree of extension in the course of rifting. These blocks are separated by local areas with oceanic crust formed due to the breakup of the continental crust and diffusive spreading. These areas are characterized by deep bottom and high values of Bouguer anomalies. The southern framework of the central province consists of subsided continental blocks and microcontinents divided by small spreading-type basins formed by lithospheric extension complicated by strike-slip faulting. The eastern province is composed of oceanic crust formed on the backarc spreading East Scotia Ridge. The results of density analysis, analog, and numerical simulations allowed us to explain some features of the structure and evolution of these provinces. The insight into tectonic structure of the provinces and their evolution allowed us to recognize several types of riftogenic basins differing in geodynamics, age, and geological and geophysical characteristics.

Keywords

Scotia Sea tectonics topography gravity field crustal structure evolution simulation types of riftogenic basins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Bulychev, D. A. Gilod, A. N. Zaitsev, D. E. Teterin, and M. V. Kalisheva, “Structure of the tectonosphere beneath the Scotia Sea inferred from the gravimetric data analysis,” Vestn. Mosk. Univ. Ser. 4: Geol., No. 4, 69–80 (2002).Google Scholar
  2. 2.
    N. G. Vinogradova, A. V. Zhivago, and N. N. Detinova, Deep Trenches and Faults of the Southern Ocean: Geological Structure, Bottom Fauna, and Habitat Condition (GEOS, Moscow, 2000) [in Russian].Google Scholar
  3. 3.
    D. E. Gershanovich and A. V. Zhivago, “Deep water trenches and faults of the South Antilles Region,” Okeanologiya 33, 735–751 (1993).Google Scholar
  4. 4.
    A. L. Grokholskii and E. P. Dubinin, “Experimental modeling of structure-forming deformations in rift zones of mid-ocean ridges,” Geotectonics 40, 64–80 (2006).CrossRefGoogle Scholar
  5. 5.
    A. L. Grokhol’skii, E. P. Dubinin, K. T. Sevinyan, and Yu. I. Galushkin, “Expreimental simulation of the interaction between hotspot and spreading ridge: A case study of the Southeast Indian Ridge, in Vol. 34 of Zhizn’ Zemli (Mosk. Gos. Univ., Moscow, 2012), pp. 24–35.Google Scholar
  6. 6.
    E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokhol’skiy, “The history of South Atlantics spreading ridges development and time–space position of Bouve triple connection,” Ross. Zh. Nauk Zemle 1, 423–443 (1999). doi doi 10.2205/1999ES000018Google Scholar
  7. 7.
    E. P. Dubinin, A. V. Rozova, and A. A. Sveshnikov, “Endogenic nature of variations in the bottom topography of the mid-ocean rift zones with intermediate spreading rates,” Oceanology 49, 265–280 (2009).CrossRefGoogle Scholar
  8. 8.
    E. P. Dubinin, A. L. Grokhol’skii, A. V. Kokhan, and A. A. Sveshnikov, “Thermal and rheological state of the lithosphere and specific features of structuring in the rift zone of the Reykjanes Ridge (from the results of numerical and experimental modeling),” Izv., Phys. Solid Earth 47, 586–599 (2011).CrossRefGoogle Scholar
  9. 9.
    E. P. Dubinin, Yu. I. Galushkin, and N. M. Sushchevskaya, “Spreading ridges and transform faults,” in Mirovoi okean, Vol. 1: Geologiya i tektonika okeana. Katastroficheskie yavleniya v okeane, Ed. by L. I. Lobkovsky (Nauchn. Mir, Moscow, 2013), pp. 92–170.Google Scholar
  10. 10.
    E. P. Dubinin, D. E. Teterin, A. V. Kokhan, and E. S. Kurbatova, “Riftogenic and paleosubduction basins of West Antarctica and the Scotia Sea,” in Osadochnye basseiny i geologicheskie predposylki prognoza novykh ob”ektov, perspektivnykh na neft’ i gaz. Materialy XLIV Tektonicheskogo soveshchaniya (GEOS, Moscow, 2012), pp. 122–127.Google Scholar
  11. 11.
    A. V. Kokhan, E. P. Dubinin, A. L. Grokholsky, and A. S. Abramova, “Kinematics and characteristic features of the morphostructural segmentation of the Knipovich Ridge,” Oceanology 52, 688–699 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Yu. Sokolov, “Tectonic elements of the Arctic Region inferred from small-scale geophysical fields,” Geotectonics 43, 18–34 (2009).CrossRefGoogle Scholar
  13. 13.
    D. E. Teterin, “Postmiocene geodynamic evolution of the Drake Passage, Western Antarctic Region, Southern Ocean,” Izv., Phys. Solid Earth 47, 653–668 (2011).CrossRefGoogle Scholar
  14. 14.
    D. E. Teterin, E. P. Dubinin, G. B. Udintsev, A. V. Kol’tsova, and L. G. Domaratskaja, “Major tectonic elements of the Scotia Plate,” Oceanology 55, 236–244 (2015).CrossRefGoogle Scholar
  15. 15.
    D. E. Teterin, E. P. Dubinin, and G. B. Udintsev, “Deep structure and isostasy of the central Scotia Sea,” Izv., Phys. Solid Earth 51, 469–479 (2015).CrossRefGoogle Scholar
  16. 16.
    G. B. Udintsev, A. F. Beresnev, N. A. Kurentsova, A. V. Koltsova, L. G. Domoratskaya, H. W. Schenke, N. Ott, M. König, W. Jokat, V. G. Bakhmutov, V. D. Soloviev, S. P. Levashov, N. A. Yakimchuk, and I. N. Korchagin, “Drake Passage and Scotia Sea—the oceanic gates of the Western Antarctica,” in Stroenie i istoriya razvitiya litosfery. Vklad Rossii v Mezhdunarodnyi Polyarnyi God (Paulsen, Moscow, 2010), Vol. 4, pp. 66–90.Google Scholar
  17. 17.
    S. A. Ushakov and G. E. Grikurov, “On the problem of structure and origin of the Scotia Island Arc,” Inf. Byull. Sov. Antarkt. Eksped., No. 70, 14–20 (1968).Google Scholar
  18. 18.
    A. I. Shemenda, “Similarity criteria when mechanical simulation of tectonic processes,” Geol. Geofiz., No. 10, 10–19 (1983).Google Scholar
  19. 19.
    A. I. Shemenda and A. L. Grocholsky, “Geodynamics of the South Antilles Region,” Geotectonics 20, 58–66 (1986).Google Scholar
  20. 20.
    J. Acosta and E. Uchupi, “Transtensional tectonics along the South Scotia Ridge, Antarctica,” Tectonophysics 267, 31–56 (1996).CrossRefGoogle Scholar
  21. 21.
    W. Alvarez, “Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics,” J. Geophys. Res.: Solid Earth 87, 6697–6710 (1982).CrossRefGoogle Scholar
  22. 22.
    P. Barker, I. Dalziel, and B. Storey, “Tectonic Development of the Scotia Arc Region,” in The Geology of Antarctica (Clarendon Press, Oxford, 1991), pp. 215–248.Google Scholar
  23. 23.
    P. F. Barker, “Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation,” Earth-Sci. Rev. 55, 1–39 (2001).CrossRefGoogle Scholar
  24. 24.
    N. Bruguier and R. Livermore, “Enhanced magma supply at the southern East Scotia Ridge: evidence for mantle flow around the subducting slab?,” Earth Planet. Sci. Lett. 191, 129–144 (2001).CrossRefGoogle Scholar
  25. 25.
    D. Civile, E. Lodolo, A. Vuan, and M. Loreto, “Tectonics of the Scotia–Antarctica plate boundary constrained from seismic and seismological data,” Tectonophysics 550, 17–34 (2012).CrossRefGoogle Scholar
  26. 26.
    F. Coren, G. Geccone, E. Lodolo, C. Zanolla, N. Zitellini, C. Bonazzi, and J. Centonze, “Morphology, Seismic Structure and Tectonic Development of the Powell Basin, Antarctica,” J. Geol. Soc. (London, U.K.) 154, 849–862 (1997).CrossRefGoogle Scholar
  27. 27.
    C. DeMets, R. Gordon, and D. Argus, “Geologically current plate motions,” Geophys. J. Int. 181, 1–80 (2010).CrossRefGoogle Scholar
  28. 28.
    G. Eagles, “The age and origin of the central Scotia Sea,” Geophys. J. Int. 183, 587–600 (2010).CrossRefGoogle Scholar
  29. 29.
    G. Eagles and W. Jokat, “Tectonic reconstructions for paleobathymetry in Drake Passage,” Tectonophysics 611, 28–50 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Eagles, R. A. Livermore, J. D. Fairhead, and P. Morris, “Tectonic evolution of the west Scotia Sea,” J. Geophys. Res.: Solid Earth 110, B02401 (2005). doi 10.1029/2004JB003154Google Scholar
  31. 31.
    G. Eagles, R. Livermore, and P. Morris, “Small basins in the Scotia Sea: The Eocene Drake Passage gateway,” Earth Planet Sci. Lett. 242, 343–353 (2006).CrossRefGoogle Scholar
  32. 32.
    J. Galindo-Zaldívar, J. Balanya, F. Bohoyo, and A. Jabaloy, “Active crustal fragmentation along the Scotia–Antarctic plate boundary east of the South Orkney Microcontinent (Antarctica),” Earth Planet. Sci. Lett. 204, 33–46 (2002).CrossRefGoogle Scholar
  33. 33.
    J. Galindo-Zaldívar, L. Gamboa, A. Maldonado, S. Nakao, and Y. Bochu, “Tectonic development of the Bransfield Basin and its prolongation to the South Scotia Ridge, northern Antarctic Peninsula,” Mar. Geol. 206, 267–282 (2004).CrossRefGoogle Scholar
  34. 34.
    J. Galindo-Zaldívar, F. Bohoyo, A. Maldonado, A. Schreider, E. Suriñach, and J. Vázquez, “Propagating rift during the opening of a small oceanic basin: The Protector Basin (Scotia Arc, Antarctica),” Tectonophysics 41, 398–412 (2006).Google Scholar
  35. 35.
    J. Galindo-Zaldívar, E. Puga, F. Bohoyo, F. J. González, A. Maldonado, Y. M. Martos, L. F. Pérez, P. Ruano, A. A. Schreider, L. Somoza, E. Suriñach, and A. Díaz de Federico, “Magmatism, structure and age of Dove Basin (Antarctica): A key to understanding South Scotia Arc development,” Global Planet. Change 122, 50–69 (2014).CrossRefGoogle Scholar
  36. 36.
    GEBCO_08 grid, ver. 20090202, http://www.gebco.netGoogle Scholar
  37. 37.
    J. L. Giner-Robles, J. M. González-Casado, P. Gumiel, S. Martin-Velázquez, and C. García-Cuevas, “A kinematic model of the Scotia plate (SW Atlantic Ocean),” J. S. Am. Earth Sci. 16, 179–191 (2003).CrossRefGoogle Scholar
  38. 38.
    R. Livermore, “Back-arc spreading and mantle flow in the East Scotia Sea,” in Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes, Vol. 219 of Geol. Soc. London, Spec. Publ., Ed. by R. D. Larter and P. T. Leat (London, 2003), pp. 315–331.Google Scholar
  39. 39.
    R. Livermore, A. Cunningham, L. Vanneste, and R. Larter, “Subduction influence on magma supply at the East Scotia Ridge,” Earth Planet. Sci. Lett. 150, 261–275 (1997).CrossRefGoogle Scholar
  40. 40.
    R. Livermore, C.-D. Hillenbrand, M. Meredith, and G. Eagles, “Drake Passage and Cenozoic climate: an open and shut case?,” Geochem. Geophys. Geosyst. 8 (1), Q01005 (2007). doi 10.1029/2005GC001224CrossRefGoogle Scholar
  41. 41.
    E. Lodolo, D. Civile, A. Vuan, A. Tassone, and R. Geletti, “The Scotia–Antarctica plate boundary from 35° W to 45° W,” Earth Planet. Sci. Lett. 293, 200–215 (2010).CrossRefGoogle Scholar
  42. 42.
    A. Maldonado, J. C. Balanyá, A. Barnolas, J. Galindo- Zaldívar, J. Hernández, A. Jabaloy, R. Livermore, J. M. Martínez-Martínez, J. Rodríguez-Fernández, C. Sanz de Galdeano, L. Somoza, E. Suriñach, and C. Viseras, “Tectonics of an extinct ridge-transform intersection, Drake Passage (Antarctica),” Mar. Geophys. Res. 21, 43–68 (2000).CrossRefGoogle Scholar
  43. 43.
    A. Maldonado, A. Barnolas, F. Bohoyo, J. Galindo-Zaldívar, J. Hernandez-Molina, F. Lobo, J. Rodríguez-Fernández, L. Somoza, and J. T. Vázquez, “Contourite deposits in the central Scotia Sea: The importance of the Antarctic Circumpolar Current and the Weddell Gyre flows,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 198, 187–221 (2003).CrossRefGoogle Scholar
  44. 44.
    A. Maldonado, F. Bohoyo, J. Galindo-Zaldívar, J. Hernandez-Molina, A. Jabaloy, F. J. Lobo, J. Rodríguez-Fernández, E. Suriñach, and J. T. Vázquez, “Ocean basins near the Scotia–Antarctic plate boundary: Influence of tectonics and paleoceanography on the Cenozoic deposits,” Mar. Geophys. Res. 27, 83–107 (2006).CrossRefGoogle Scholar
  45. 45.
    A. Maldonado, N. Zitellini, G. Leitchenkov, J. C. Balanyá, F. Coren, J. Galindo-Zaldívar, E. Lodolo, A. Jabaloy, C. Zanolla, J. Rodriguez-Fernandez, and O. Vinnikovskaya, “Small ocean basin development along the Scotia–Antarctica plate boundary and in the northern Weddell Sea,” Tectonophysics 296, 371–402 (1998).CrossRefGoogle Scholar
  46. 46.
    S. Maus, U. Barckhausen, H. Berkenbosch, N. Bournas, J. Brozena, V. Childers, F. Dostaler, J. D. Fairhead, C. Finn, R. R. B. von Frese, C. Gaina, S. Golynsky, R. Kucks, H. Lühr, P. Milligan, et al., “EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements,” Geochem. Geophys. Geosyst. 10 (8), Q08005 (2009). doi 10.1029/2009GC002471CrossRefGoogle Scholar
  47. 47.
    Y. M. Martos, J. Galindo-Zaldívar, M. Catalan, F. Bohoyo, A. Maldonado, “Asthenospheric Pacific- Atlantic flow barriers and the West Scotia Ridge extinction,” J. Geophys. Res.: Solid Earth 41, 43–49 (2014). doi 10.1002/2013GL058885Google Scholar
  48. 48.
    Y. M. Martos, M. Catalan, J. Galindo-Zaldívar, A. Maldonado, F. Bohoyo, “Insights about the structure and evolution of the Scotia Arc from a new magnetic data compilation,” Global Planet. Change 123, 239–248 (2014).CrossRefGoogle Scholar
  49. 49.
    B. Nicholson and J. Georgen, “Controls on crustal accretion along the back-arc East Scotia Ridge: Constraints from bathymetry and gravity data,” Mar. Geophys. Res. 34, 45–58 (2013). doi 10.1007/s11001-013- 9172-xCrossRefGoogle Scholar
  50. 50.
    M. Owen, S. Day, P. Leat, A. Tate, and T. Martin, “Control of sedimentation by active tectonics, glaciation, and contourite-depositing currents in Endurance basin, South Georgia,” Global Planet. Change 123, 323–343 (2014).CrossRefGoogle Scholar
  51. 51.
    A. Pandey, L. Parson, and A. Milton, “Geochemistry of the Davis and Aurora Banks: Possible implications on evolution of the North Scotia Ridge,” Mar. Geol. 268, 106–114 (2010).CrossRefGoogle Scholar
  52. 52.
    L. Pérez, E. Lodolo, A. Maldonado, F. J. Hernandez- Molina, F. Bohoyo, J. Galindo-Zaldívar, F. J. Lobo, and M. Burca, “Tectonic development, sedimentation and paleoceanography of the Scan Basin (southern Scotia Sea, Antarctica),” Global Planet. Change 123, 344–358 (2014).CrossRefGoogle Scholar
  53. 53.
    J. Pierce, A. Hastie, P. Leat, I. W. Dalziel, L. A. Lawver, P. Barker, I. L. Millar, T. L. Barry, and R. E. Bevins, “Composition and evolution of the Ancestral South Sandwich Arc: Implications for the flow of deep ocean water and mantle through the Drake Passage Gateway,” Global Planet. Change 123, 298–322 (2014).CrossRefGoogle Scholar
  54. 54.
    D. Sandwell, D. Muller, W. Smith, E. Garcia, R. Francis, “New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure,” Science 346, 65–67 (2014).CrossRefGoogle Scholar
  55. 55.
    A. I. Shemenda and A. L. Grocholsky, “Physical modeling of slow seafloor spreading,” J. Geophys. Res.: Solid Earth 99, 9137–9153 (1994).CrossRefGoogle Scholar
  56. 56.
    R. Smalley, Jr., I. W. D. Dalziel, M. G. Bevis, E. Kendrick, D. S. Stamps, E. C. King, F. W. Taylor, E. Lauria, A. Zakrajsek, and H. Parra, “Scotia arc kinematics from GPS geodesy,” Geophys. Res. Lett. 34, L21308 (2007). doi 10.1029/2007GL031699CrossRefGoogle Scholar
  57. 57.
    W. Smith and D. Sandwell, “Global sea floor topography from satellite altimetry and ship depth soundings,” Science 277, 1956–1962 (1997). doi 10.1126/science. 277.5334.1956CrossRefGoogle Scholar
  58. 58.
    C. Thomas, R. Livermore, and F. Pollitz, “Motion of the Scotia Sea plates,” Geophys. J. Int. 155, 789–804 (2003).CrossRefGoogle Scholar
  59. 59.
    S. Uyeda and H. Kanamori, “Back-arc opening and the mode of subduction,” J. Geophys. Res.: Solid Earth 84, 1049–1061 (1979). doi 10.1029/JB084iB03p01049CrossRefGoogle Scholar
  60. 60.
    C. Verard, K. Flores, and G. Stampfli, “Geodynamic reconstructions of the South America–Antarctica plate system,” J. Geodyn. 53, 43–60 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • E. P. Dubinin
    • 1
  • A. V. Kokhan
    • 1
  • D. E. Teterin
    • 2
  • A. L. Grokhol’sky
    • 1
  • E. S. Kurbatova
    • 1
  • N. M. Sushchevskaya
    • 2
  1. 1.Museum of Natural History at Moscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations