, Volume 49, Issue 4, pp 320–331 | Cite as

Structural control on epithermal mineralization in the Troud-Chah Shirin belt using point pattern and Fry analyses, north of Iran

  • B. MehrabiEmail author
  • S. M. Ghasemi
  • F. E. Tale


The Troud-Chah Shirin belt, located in the Alborz magmatic belt, is one of several mineralized belt in Iran. Ore mineralization in this belt is controlled by faults and fractures. The spatial distribution of mineralization is the foremost concern in regional exploration and it could be considered as a very important tool in the investigation of mineral deposits. In this study, we use point pattern and Fry analyses to known occurrences and distribution of epithermal mineral deposits, and results show that structural controls play the major role in distribution of these ore deposits. A mechanism of structural controls on epithermal mineralization, which is involves a more-or-less regular T fractures of extension faults/fractures at and/or around intersections of F1 and F2 trending strike-slip faults/fractures. Spatial data and structural controls can apply for future exploration, for possibly undiscovered occurrences of epithermal ore deposits.


Troud-Chah Shirin belt epithermal mineralization point pattern Fry analyses structural controls 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Alavi, Tectonic Map of the Middle East, 1: 5000000 (Geol. Surv. Iran, 1991).Google Scholar
  2. 2.
    M. Alavi, “Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran”, J. Geodyn. 21, 1–33 (2004).CrossRefGoogle Scholar
  3. 3.
    M. B. Allen, M. R. Ghassemi, M. Shahrabi, and M. Qorashi, “Accommodation of late Cenozoic shortening in the Alborz range, Northern Iran”, J. Struct. Geol. 25, 659–672 (2003).CrossRefGoogle Scholar
  4. 4.
    A. S. Andre-Mayer and J. Sausse, “Thickness and spatial distribution of veins in a porphyry copper deposit, Rosia Poieni, Romania”, J. Struct. Geol. 29, 1695–1708 (2007).CrossRefGoogle Scholar
  5. 5.
    H. Azizi and A. Jahangiri, “Cretaceous subductionrelated volcanism in the northern Sanandaj-Sirjan Zone, Iran”, J. Geodyn. 45, 178–190 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Azizi and H. Moinevaziri, “Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran”, J. Geodyn. 47, 167–179 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Baddeley, “Spatial point processes and their applications”, in Stochastic Geometry: Lecture Notes in Mathematics, Ed. by A. Baddeley, I. Barony, R. Schneider, and W. Weil Springer, (2005).Google Scholar
  8. 8.
    B. N. Boots and A. Getis, Point Pattern Analysis (Sage Publications, 1988).Google Scholar
  9. 9.
    A. A. Calagari and G. Hosseinzadeh, “The mineralogy of copper-bearing skarn to the east of the Sungun-Chayriver, East-Azarbaidjan, Iran”, J. Asian Earth. Sci. 28, 423–438 (2006).CrossRefGoogle Scholar
  10. 10.
    C. A. Carlson, “Spatial distribution of ore deposits”, Geology 19, 111–114 (1991).CrossRefGoogle Scholar
  11. 11.
    E. J. M. Carranza, Geochemical anomaly and Mineral Prospectively Mapping in GIS, Handbook of Exploration and Environmental Geochemistry (Elsevier, 2008).Google Scholar
  12. 12.
    E. J. M. Carranza, “Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features”, Ore Geol. Rev. 35, 383–400 (2009).CrossRefGoogle Scholar
  13. 13.
    A. R. Crawford, “A summary of isotopic age data for Iran, Pakistan and India”, Soc. Geol. Fr. 8, 251–260 (1977).Google Scholar
  14. 14.
    T. F. Cox, “Reflexive nearest neighbors”, Biometrics 37, 367–369 (1981).CrossRefGoogle Scholar
  15. 15.
    P. Diggle, Statistical Analysis of Spatial Point Patterns, 2nd Ed., (Arnold, London, 2003).Google Scholar
  16. 16.
    P. J. Diggle, Statistical Analysis of Spatial Point Patterns, (Academic Press, London, 1983).Google Scholar
  17. 17.
    M. H. Emami, Magmatism in Iran, (Geol. Surv. Iran, Iran, 2000).Google Scholar
  18. 18.
    S. A. Eshraghi and A. Jalali, Geological Map of Moalleman, 1: 100000 (Geol. Surv. Iran, 2006).Google Scholar
  19. 19.
    M. Fard, E. Rastad, and M. Ghaderi, “Epithermal gold and base metal mineralization at Gandy deposit, north of central Iran and the role of rhyolitic intrusions”, J. Sci. 17, 327–335 (2006).Google Scholar
  20. 20.
    N. Fry, “Random point distributions and strain measurement in rocks”, Tectonophysics 60, 89–105 (1979).CrossRefGoogle Scholar
  21. 21.
    Geological Map of Troud, 1: 250000 (Geol. Surv. Iran, 1978).Google Scholar
  22. 22.
    J. Golonka, “Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic”, Tectonophysics 381, 235–273 (2004).CrossRefGoogle Scholar
  23. 23.
    J. Golonka, Cambrian-Neogene Plate Tectonic Maps (Inst. Geol. Sci., Jagiellonian Univ., Krakow, 2000).Google Scholar
  24. 24.
    M. Gorbani, “Metallogenic and mineralization phases of Iran”, 6th International Conferences of Middle East, UAE (2005).Google Scholar
  25. 25.
    S. S. Hanna and N. Fry, “A comparison of methods of strain determination in rocks from south west Dyfed (Pembrokeshire) and adjacent areas”, J. Struct. Geol. 1, 155–162 (1979).CrossRefGoogle Scholar
  26. 26.
    J. Hassanzadeh, A. M. Ghazi, G. Axen, et al., “Oligocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc”, Geol. Soc. Am. Abstr Progr. 34 (6), 331–357 (2002).Google Scholar
  27. 27.
    A. R. Hushmandzadeh, M. N. Alavi, and A. A. Haghipour, “Evolution of geological phenomenon in Troud area (Precambrian to recent)”, GSI, Report H5 (1978).Google Scholar
  28. 28.
    A. Imamjome, E. Rastad, F. Bouzari, and N. Rashidnezhad, “An introduction to individual disseminatedveinlet and vein mineralization system of Cu (Pb-Zn) in the Chah Messi and Ghole Kaftaran mining district, eastern part of the Troud-Chah Shirin magmatic arc”, Geosci. Q. 18, 112–125 (2009).Google Scholar
  29. 29.
    M. L. Kopp, Lateral Escape Structures in the Alpine-Himalayan Collision Belt, GIN RAN (1997) [in Russian].Google Scholar
  30. 30.
    J. L. Lagarde, S. A. Omar, and B. Roddaz, “Structural characteristics of granitic plutons emplaced during weak regional deformation: Examples from Late Cretaceous plutons, Morocco”, J. Struct. Geol. 12, 334–343 (1990).CrossRefGoogle Scholar
  31. 31.
    B. B. Mandelbrot, The Fractal Geometry of Nature, (Freeman, New York, 1982).Google Scholar
  32. 32.
    B. B. Mandelbrot, The Fractal Geometry of Nature (Updated and Augmented Edition) (Freeman, New York. 1983).Google Scholar
  33. 33.
    B. Mehrabi and M. S. Ghasemi, “Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran”, Geol. Soc. India 80, 563–578 (2012).CrossRefGoogle Scholar
  34. 34.
    B. Mehrabi, M. S. Ghasemi, and E. F. Tale, “Comparative of polymetallic epithermal mineralization in Cheshmeh Hafez and Chalo ore deposits, Troud-Chah Shirin zone, Semnan Province”, Geosciences 24, 105–118 (2014).Google Scholar
  35. 35.
    N. Rashidnezhad, “The Au (Cu) Baghu mineralization: Petrological and magmatic evolution relationship”, Msc Thesis, University of Kharazmi, Iran (1992).Google Scholar
  36. 36.
    A. M. C. Sengör, A. Cin, D. B. Rowley, and S. Y. Nie, “Space-time patterns of magmatism along the Tethys: a preliminary study”, J. Geol. 101, 51–84 (1993).CrossRefGoogle Scholar
  37. 37.
    A. M. C. Sengor and B. A. Natalin, “Palaeotectonics of Asia: fragments of a synthesis”, in The Tectonic Evolution of Asia, Ed. by A. Yin, M. Harrison (Cambridge Univ. Press, 1996) pp. 443–486.Google Scholar
  38. 38.
    G. H. Shamanian, J. W. Hedenquist, K. H. Hattori, and J. Hassanzadeh, “The Gandy and Abolhassani Epithermal Prospects in the Alborz Magmatic Arc, Semnan Province, Northern Iran”, Econ. Geol. 99, 691–712 (2004).CrossRefGoogle Scholar
  39. 39.
    J. Stocklin, “Possible ancient continental margins in Iran”, in The Geology of Continental Margins, Ed. by C. A. Burk and C. L. Drake (Springer, Berlin, Germany, 1974), pp. 873–887.CrossRefGoogle Scholar
  40. 40.
    M. P. Stubley, “Spatial distribution of kimberlite in the Slave craton, Canada: A geometrical approach”, Lithos. 77, 683–693 (2004).CrossRefGoogle Scholar
  41. 41.
    H. Tajeddin, “Geology, mineralogy, geochemistry and genesis of Darestan gold occurrences, south of Damghan”, MSc Thesis (Univ. Tarbiat Moddares, 1999).Google Scholar
  42. 42.
    M. V. Valizadeh and A. R. Jafarian, “Linkages between petrogenetic, volcanotectonic arc setting and metallogeny of Kuhe Zar, Troud”, J. Sci. 20, 21–33 (1991).Google Scholar
  43. 43.
    J. R. Vearncombe and S. Vearncombe, “The spatial distribution of mineralization: Application of Fry analysis”, Econ. Geol. 94, 475–486 (1999).CrossRefGoogle Scholar
  44. 44.
    S. Vearncombe and J. R. Vearncombe, “Tectonic controls on kimberlite location, southern Africa”, J. Struct. Geol. 24, 1619–1625 (2002).CrossRefGoogle Scholar
  45. 45.
    R. Walker and J. Jackson, “Active tectonics and late Cenozoic strain distribution in central and eastern Iran”, Tectonics 23, (2004).Google Scholar
  46. 46.
    A. Zanchi, F. Berra, M. Mattei, et al., “Inversion tectonics in central Alborz, Iran”, J. Struct. Geol. 28, 2023–2037 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Faculty of Earth SciencesKharazmi UniversityTehranIran

Personalised recommendations