, Volume 48, Issue 2, pp 87–103 | Cite as

Off-axis structures of spreading zones according to results of experimental modeling

  • A. L. Grokholsky
  • E. P. Dubinin
  • A. V. Kokhan
  • A. V. Petrova


The off-axis topography of spreading ridges is a result of tectonic and magmatic processes occurring in the axial zone and operating off the ridge axis during further evolution of the crust. The results of physical and numerical simulations have shown that differences in topography roughness, rift valley depth, frequency and amplitude of normal faults, and geometric stability of the rift axis are determined by (a) the rate of extension and accretion of the new crust, (b) the thickness of the brittle lithospheric layer, and (c) the temperature of the underlying asthenosphere. Under conditions of the fast spreading, the stationary axial magma chamber in the crust predetermines the existence of the thinner and weakened lithosphere. As a result, the axis jumps for a short distance and the axis geometry remains almost rectilinear. The destruction of the thin axial lithosphere with a low mechanical strength results in formation of frequent and low-amplitude normal faultings. All these factors lead to the formation of the characteristic poorly dissected topography of fast-spreading ridges. Without a stationary axial magmatic chamber in the crust of slow-spreading ridges and with a thick and strong lithosphere, a deeply dissected axial and off-axis topography arises. The axis jumps for a significant distance within the rift valley, giving rise to geometric instability of the axis and development of transform and nontransform offsets.


spreading ridge off-axis topography modeling transform and nontransform offsets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. I. Galushkin and E. P. Dubinin, “Thermal regime of the lithosphere by jump of spreading axis at the Mathematicians Ridge,” Fizika Zemli, No. 9, 59–69 (1992).Google Scholar
  2. 2.
    Yu. I. Galushkin, E. P. Dubinin, and A. A. Sveshnikov, “A nonstationary model of the thermal regime of axial zones of mid-ocean ridges: formation of crustal and mantle magma chambers,” Izv. Phys. Solid Earth 43(2), 130–147 (2007).CrossRefGoogle Scholar
  3. 3.
    Yu. I. Galushkin, E. P. Dubinin, and A. A. Sveshnikov, “Rheological layering of the oceanic lithosphere in rift zones of mid-oceanic ridges,” Dokl. Earth Sci. 418(1), 114–118 (2008).CrossRefGoogle Scholar
  4. 4.
    A. L. Grokholskii and E. P. Dubinin, “Experimental modeling of structure-forming deformations in rift zones of mid-ocean ridges,” Geotectonics 40(1), 64–80 (2006).CrossRefGoogle Scholar
  5. 5.
    A. L. Grokholskii, E. P. Dubinin, and I. V. Shapovalova, “Structure formation in areas of nontransform offsets of axial spreading zones (analog modeling),” Moscow Univ. Geol. Bull. 65(3), 185–193 (2010).CrossRefGoogle Scholar
  6. 6.
    A. L. Grokholskii and E. P. Dubinin, “Structure formation in the rift zones and in the transverse offset of the spreading axes: results of physical modeling,” Izv. Phys. Solid Earth 46(5), 412–418 (2010).CrossRefGoogle Scholar
  7. 7.
    A. L. Grokholskii, E. P. Dubinin, K. T. Sevinyan, and Yu. I. Galushkin, “Experimental modeling of interaction between hotspot and spreading ridge, a case of the Southeast Indian Ridge,” in The Earth’s Life (MGU, Moscow, 2012), No. 34, pp. 24–35 [in Russian].Google Scholar
  8. 8.
    E. P. Dubinin and A. A. Sveshnikov, “Evolution of the lithosphere under extinct spreading ridges (results of mathematical modeling),” Geotectonics 34(3), 234–250 (2000).Google Scholar
  9. 9.
    E. P. Dubinin and S. A. Ushakov, Oceanic Rifting (GEOS, Moscow, 2001) [in Russian].Google Scholar
  10. 10.
    E. P. Dubinin, A. V. Rozova, and A. A. Sveshnikov, “Endogenic nature of variations in the bottom topography of the mid-ocean rift zones with intermediate spreading rates,” Oceanology 49(2), 265–280 (2009).CrossRefGoogle Scholar
  11. 11.
    E. P. Dubinin, Yu. I. Galushkin, and A. A. Sveshnikov, “A model of oceanic crust accretion and its geodynamic implications,” in The Earth’s Life: Geology, Geodynamics, Ecology, and Museum Science (MGU, Moscow, 2010), pp. 53–82 [in Russian].Google Scholar
  12. 12.
    A. V. Il’in, “Origin and development of the morphological structure of the rift zone of slow-spreading mid-ocean ridges,” Oceanology 50(2), 240–253 (2010).CrossRefGoogle Scholar
  13. 13.
    O. G. Sorokhtin, “Relationship between topography of mid-ocean ridges and rate of oceanic bottom spreading,” Dokl. AN SSSR 208(6), 1338–1341 (1973).Google Scholar
  14. 14.
    A. I. Shemenda, “Similarity criteria in mechanical modeling of tectonic processes,” Geol. Geofiz. 24(10), 10–19 (1983).Google Scholar
  15. 15.
    M. Cannat, D. Sauter, V. Mendel, et al., “Modes of seafloor generation at a melt-poor ultraslow-spreading ridge,” Geology 34(7), 605–608 (2006).CrossRefGoogle Scholar
  16. 16.
    S. M. Carbotte and K. C. Macdonald, “Causes of variation in fault-facing direction on the ocean floor,” Geology 18, 749–752 (1990).CrossRefGoogle Scholar
  17. 17.
    O. Dauteuil, O. Bourgeois, and T. Mauduit, “Lithosphere strength controls oceanic transform zone structure: insights from analogue models,” Geophys. J. Int. 150, 706–714 (2002).CrossRefGoogle Scholar
  18. 18.
    B. Ehlers and W. Jokat, “Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean,” Geophys. J. Int. 177, 451–462 (2009).CrossRefGoogle Scholar
  19. 19.
    J. Escartin, P. A. Cowie, R. C. Searle, et al., “Quantifying tectonic strain and magmatic accretion at a slow spreading ridge segment, Mid-Atlantic Ridge, 29° N,” J. Geophys. Res. 104, 10421–10437 (1999).CrossRefGoogle Scholar
  20. 20.
    J. Escartin, D. Smith, J. Cann, et al., “Central role of detachment faults in accretion of slow-spreading Oceanic Lithosphere,” Nature 455, 790–794 (2008).CrossRefGoogle Scholar
  21. 21.
    J. A. Goff, “A global and regional stochastic analysis of near-ridge abyssal hill morphology,” J. Geophys. Res. 96(B13), 21713–21737 (1991).CrossRefGoogle Scholar
  22. 22.
    J. A. Goff, A. Malinverno, D. J. Fornari, et al., “Abyssal hill segmentation: quantitative analysis of the East Pacific Rise flanks 7°–9° S,” J. Geophys. Res. 98(B8), 13851–13862 (1993)CrossRefGoogle Scholar
  23. 23.
    J. A. Goff, Y. Ma, A. Shah, and J. R. Cochran, “Stochastic analysis of seafloor morphology on the flank of the Southeast Indian Ocean Ridge. The influence of ridge morphology on the formation of abyssal hills,” J. Geophys. Res. 102, 521–534 (1997).Google Scholar
  24. 24.
    K. A. Kriner, R. A. Pockalny, and R. L. Larson, “Bathymetric gradients of lineated abyssal hills: Inferring seafloor spreading vectors and a new model for hills formed at ultra-fast rates,” Earth Planet. Sci. Lett. 242, 98–110 (2006).CrossRefGoogle Scholar
  25. 25.
    P. Lonsdale, “Regional shape and tectonics of the equatorial East Pacific Rise,” Mar. Geophys. Res. 3, 295–315 (1977).CrossRefGoogle Scholar
  26. 26.
    K. C. Macdonald, “Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone,” Ann. Rev. Earth Planet. Sci., No. 10, 155–190 (1982).Google Scholar
  27. 27.
    B. V. Malkin and A. I. Shemenda, “Mechanism of rifting: consideration based on results of physical modeling and on geological and geophysical data,” Tectonophysics 199, 193–210 (1991).CrossRefGoogle Scholar
  28. 28.
    A. Malinverno, “Inverse square-root dependence of mid-ocean ridge flank roughness on spreading rate,” Nature 352, 58–60 (1991).CrossRefGoogle Scholar
  29. 29.
    J. Mammerickx and D. Sandwell, “Rifting of old oceanic lithosphere,” J. Geophys. Res. 1(B7), 1975–1988 (1986).CrossRefGoogle Scholar
  30. 30.
    P. J. Michael, C. H. Langmuir, H. J. Dick, et al., “Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean,” Nature 423, 956–961 (2003).CrossRefGoogle Scholar
  31. 31.
    R. L. Parker and D. Oldenburgh, “Thermal model of ocean ridges,” Nature Phys. Sci. 242(122), 137–139 (1973).CrossRefGoogle Scholar
  32. 32.
    W. B. F. Ryan, S. M. Carbotte, J. O. Coplan, et al., “Global multi-resolution topography synthesis,” Geochem. Geophys. Geosyst. 10, Q03014 (2009). doi: 10.1029/2008GC002332CrossRefGoogle Scholar
  33. 33.
    D. Sandwell and W. Smith, “Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate,” J. Geophys. Res. 114, 1–18 (2009).Google Scholar
  34. 34.
    D. Sauter, H. Sloan, M. Cannat, et al., “From slow to ultra-slow: how does spreading rate affect seafloor roughness and crustal thickness?,” Geology 9(10), 911–914 (2011).CrossRefGoogle Scholar
  35. 35.
    P. R. Shaw and J. Lin, “Causes and consequences of variations in faulting style at the Mid-Atlantic Ridge,” J. Geophys. Res. 98(B12), 21839–21851 (1993).CrossRefGoogle Scholar
  36. 36.
    P. R. Shaw and J. Lin, “Model of ocean ridge lithospheric deformation: dependence on crustal thickness, spreading rate and segmentation,” J. Geophys. Res. 101(B18), 17977–17993 (1996).CrossRefGoogle Scholar
  37. 37.
    A. I. Shemenda and A. L. Grocholsky, “Physical modeling of slow seafloor spreading,” J. Geophys. Res. 99, 9137–9153 (1994).CrossRefGoogle Scholar
  38. 38.
    W. Thatcher and D. P. Hill, “A Simple model for the fault-generated morphology of slow-spreading midoceanic ridges,” J. Geophys. Res. 100, 561–570 (1995).CrossRefGoogle Scholar
  39. 39.
    B. E. Tucholke and J. Lin, “A geological model for the structure of ridge segments in slow spreading ocean crust,” J. Geophys. Res. 99(B6), 11937–11958 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. L. Grokholsky
    • 1
  • E. P. Dubinin
    • 1
  • A. V. Kokhan
    • 1
  • A. V. Petrova
    • 2
  1. 1.Earth Science MuseumMoscow State UniversityMoscowRussia
  2. 2.Faculty of GeologyMoscow State UniversityMoscowRussia

Personalised recommendations