, Volume 47, Issue 3, pp 180–196 | Cite as

Carbonate and silicate-carbonate injection complexes in collision systems: The West Baikal region as an example

  • E. V. SklyarovEmail author
  • V. S. Fedorovsky
  • A. B. Kotov
  • A. V. Lavrenchuk
  • A. M. Mazukabzov
  • A. E. Starikova


Two types of carbonate and carbonate-silicate rocks: synmetamorphic marble melange and veined bodies in amphibolites, gabbroic rocks, and syenites are recognized in the Early Paleozoic Ol’khon collision system in the West Baikal region. The marble melange is characterized by the various size of the fragments of the mafic granulite, gneisses, metagabbros, and granites. It is suggested that the melange was injected into the silicate matrix as a result of a ductile flow. The calcite, dolomite, and carbonate-silicate rocks are characterized by their massive and fine-grained texture. They are often associated with coeval granite and dolerite dikes and occasionally reveal indications of carbonate-silicate mingling. It is suggested that carbonate and carbonate-silicate rocks were injected at late stages of the synmetamorphic tectogenesis. In isotopic composition, geochemistry, and mineralogy, these carbonate rocks differ from mantle carbonatites, and their origin is most likely related to the melting of carbonate rocks in the lower crust in the presence of aqueous fluid according to the model proposed by Lentz [29]. The shearing facilitated drainage of the lower crust and the upper mantle and made it possible to inject carbonate material to the upper level as a melt and a ductile mixture along with crustal granitic and mantle-derived basic melts. The injection carbonate rocks have been described from other metamorphic complexes, e.g., in the Caledonides of Norway and in the Himalayan collision system.


Carbonate Rock Nepheline North China Craton Silicate Rock Siberian Craton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Bibikova, S. F. Karpenko, L. V. Sumin, O. G. Bogdanovsky, T. I. Kirnozova, A. V. Lyalikov, V. A. Makarov, M. M. Arakelyants, S. P. Korikovsky, V. S. Fedorovsky, Z. I. Petrova, and V. I. Levitsky, “U-Pb, Sm-Nd, Pb-Pb and K-Ar age of Metamorphic and Igneous Rocks, West Baikal Region,” in Geology and Geochronology of the Siberian Platform and Adjacent Regions (Nauka, Leningrad, 1990), pp. 170–183 [in Russian].Google Scholar
  2. 2.
    N. A. Bozhko, “Ophiolites in the Central Part of the West Baikal Region,” Dokl. Akad. Nauk SSSR 223(2), 421–424 (1975).Google Scholar
  3. 3.
    N. A. Bozhko and L. I. Demina, “Tectonic Position and Petrology of Eclogite-Like Rocks in the Ol’khon Region, West Baikal Region,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 10, 49–59 (1973).Google Scholar
  4. 4.
    A. A. Konev and V. S. Samoilov, Contact Metamorphism and Metasomatism in the Aureole of the Tazheran Alkaline Intrusion (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  5. 5.
    V. I. Levitsky, I. V. Levitsky, A. B. Kotov, and E. V. Sklyarov, “Svyatonosite from the Tazheran Intrusion: the First Data on Geological Position and Compositional Characteristics,” in Proceedings of the Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent (Inst. Geography, Irkutsk, 2009), Vol. 1, Issue 7, pp. 166–169 [in Russian].Google Scholar
  6. 6.
    O. M. Rosen and V. S. Fedorovsky, Collision Granitoids and Delamination of the Earth’s Crust in the Cenozoic, Paleozoic and Proterozoic Collision Systems (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    E. V. Sklyarov, V. S. Fedorovsky, D. P. Gladkochub, and A. G. Vladimirov, “Synmetamorphic Basic Dikes as Indicators of Collision Structure Collapse in the Western Baikal Region,” Dokl. Earth Sci. 381(9), 1028–1033 (2001).Google Scholar
  8. 8.
    E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, A. M. Mazukabzov, and A. M. Stanevich, “Geological Complexes in the Southern Marginal Part of the Siberian Craton as Indicators of Evolution of the Neoproterozoic Supercontinent,” Ross. Zh. Nauk o Zemle 3(4), 171–186 (2002).Google Scholar
  9. 9.
    Evolution of the Southern Part of the Siberian Craton in the Precambrian, Ed. by E. V. Sklyarov (Siberian Branch, Russian Acad. Sci., Novosibirsk, 2006) [in Russian].Google Scholar
  10. 10.
    E. V. Sklyarov and V. S. Fedorovsky, “Magma Mingling: Tectonic and Geodynamic Implications,” Geotectonics 40(2), 120–134 (2006).CrossRefGoogle Scholar
  11. 11.
    E. V. Sklyarov, V. S. Fedorovsky, A. B. Kotov, A. V. Lavrenchuk, A. M. Mazukabzov, and A. E. Starikova, “Carbonalites: Not Carbonatites and not Stratified Rocks,” in Proceedings of the Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent (Inst. Geography, Irkutsk, 2009), Vol. 2, Issue 7, pp. 84–86 [in Russian].Google Scholar
  12. 12.
    E. V. Sklyarov, V. S. Fedorovsky, A. B. Kotov, A. V. Lavrenchuk, A. M. Mazukabzov, V. I. Levitsky, E.B. Sal’nikova, A. E. Starikova, S. Z. Yakovleva, I. V. Anisimova, and A. M. Fedoseenko, “Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol’khon Collisional System,” Russ. Geol. Geophys. 50(12), 1091–1106 (2009).CrossRefGoogle Scholar
  13. 13.
    E. V. Sklyarov, V. S. Fedorovsky, A. B. Kotov, A. V. Lavrenchuk, A. M. Mazukabzov, and A. E. Starikova, “Carbonalites as Products of Melting of Metasedimentary Rocks in Collision Settings: Mode of Occurrence and Tectonic Implications,” in Proceedings of the 43rd Tectonic Conference on Tectonics and Geodynamics of Phanerozoic Fold Belts and Platforms (GEOS, Moscow, 2010), Vol. 2, pp. 261–264 [in Russian].Google Scholar
  14. 14.
    E. V. Sklyarov, V. S. Fedorovsky, A. B. Kotov, A. V. Lavrenchuk, A. M. Mazukabzov, and A. E. Starikova, “Injection of Carbonate and Carbonate-Silicate Complexes in the Collision Structure of the West Baikal Region,” in Proceedings of the All-Russia Conference on Tectonics, Magmatism, and Geodynamics of Eastern Asia (Inst. of Tectonics and Geophysics, Khabarovsk, 2011), pp. 216–219 [in Russian].Google Scholar
  15. 15.
    V. S. Fedorovsky, Geological Map of the Southeastern Part of the Ol’khon Region on a Scale of 1: 1000000 (Vernadsky State Geol. Museum, Moscow, 2004) [in Russian].Google Scholar
  16. 16.
    V. S. Fedorovsky and E. V. Sklyarov, “The Ol’khon Geodynamic Research Site (Baikal): High-Resolution Aerospace Data and Geological Maps of New Generations,” Geodinam. Tektonofiz. 1(4), 331–418 (2010).Google Scholar
  17. 17.
    V. S. Fedorovsky, L. F. Dobrzhinetskaya, T. V. Molchanova, and A. B. Likhachev, “A New Type of Melange (Baikal, Ol’khon Region),” Geotektonika 27(4), 30–45 (1993).Google Scholar
  18. 18.
    V. S. Fedorovsky, A. G. Vladimirov, E. V. Khain, S. A. Kargopolov, A. S. Gibsher, and A. E. Izokh, “Tectonics, Metamorphism, and Magmatism of Collision Zones in the Caledonides of Central Asia,” Geotektonika 29(3), 3–22 (1995).Google Scholar
  19. 19.
    V. S. Fedorovsky, S. V. Khromykh, V. P. Sukhorukov, M.L. Kuibida, A. G. Vladimirov, E. V. Sklyarov, K. A. Dokukina, and S. N. Chamov, “Metamorphic Mingling: A New Type of Mingling Structures,” in Proceedings of the 36th Tectonic Conference on Tectonics and Geodynamics of the Continental Lithosphere (GEOS, Moscow, 2003), Vol. 2, pp. 255–259 [in Russian].Google Scholar
  20. 20.
    V. S. Fedorovsky, E. V. Sklyarov, A. M. Mazukabzov, A. B. Kotov, S. A. Kargopolov, A. V. Lavrenchuk, and A. E. Starikova, Geological Map of the Tazheren Intrusion (Gruppa kompanii A, Moscow, 2009) [in Russian].Google Scholar
  21. 21.
    V. S. Fedorovsky, E. V. Sklyarov, A. E. Izokh, A. B. Kotov, A. V. Lavrenchuk, and A. M. Mazukabzov, “Strike-Slip Tectonics and Subalkaline Mafic Magmatism in the Early Paleozoic Collisional System of the Western Baikal Region,” Russ. Geol. Geophys. 51(5), 534–547 (2010).CrossRefGoogle Scholar
  22. 22.
    G. B. Fershtater and E. V. Pushkarev, “Carbonate Rocks in the Kempirsai-Khabarny Complex, the South Urals,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 12, 27–37 (1988).Google Scholar
  23. 23.
    K. Bell and G. R. Tilton, “Probing the Mantle: the Story from Carbonatites,” EOS 83, 273–277 (2002).CrossRefGoogle Scholar
  24. 24.
    M. Burkhard, “Calcite Twins, Their Geometry, Appearance and Significance as Stress-Strain Markers and Indicators of Tectonic Regime: a Review,” J. Struct. Geol. 15, 351–368 (1993).CrossRefGoogle Scholar
  25. 25.
    M. Drabek, J. Fryda, V. Janoushek, and M. Sarbach, “Regionally Metamorphosed Carbonatite-Like Marbles from the Varied Group, Moldanubian Unit, Bohemian Massif, Czech Republic, and Their Mo-Th-Nb-REE Mineralization,” in Mineral Deposits, Vol. 1: Processes to Processing, Ed. by C. J. Stanley (Balkema, Rotterdam, 1999), pp. 635–638.Google Scholar
  26. 26.
    M. T. Fanelli, N. Cava, and P. J. Wyllie, “Calcite and Dolomite without Portlandite at a New Eutectic in CaO-MgO-CO2-H2O with Applications to Carbonatites,” in Proceedings of the 13th General Meeting of IMA on Morphology and Phase Equilibria of Minerals (Bulgarian Acad. Sci., Sofia, 1986), pp. 313–322.Google Scholar
  27. 27.
    Z. Hou, S. Tian, Z. Yuan, Y. Xie, S. Yin, L. Yi, H. Fei, and Z. Yang, “The Himalayan Collision Zone Carbonatites in Western Sichuan, SW China: Petrogenesis, Mantle Source and Tectonic Implication,” Earth Planet. Sci. Lett. 244, 234–250 (2006).CrossRefGoogle Scholar
  28. 28.
    M. J. Le Bas, M. A. O. Babattat, R. N. Taylor, J. A. Milton, B. F. Windley, and P. M. Evins, “The Carbonatite-Marble Dykes of Abyan Province, Yemen Republic: the Mixing of Mantle and Crustal Carbonate Materials Revealed by Isotope and Trace Element Analysis,” Mineral. Petrol. 82, 105–135 (2004).CrossRefGoogle Scholar
  29. 29.
    D. R. Lentz, “Carbonatite Genesis: A Reexamination of the Role of Intrusion-Related Pneumatolytic Skarn Processes in Limestone Melting,” Geology 27, 335–338 (1999).CrossRefGoogle Scholar
  30. 30.
    Q. Li, X. Li, Y. Liu, F. Wu, J. Yang, and R. H. Mitchell, “Precise U-Pb and Th-Pb Age Determination of Kimberlitic Perovskites by Secondary Ion Mass Spectrometry,” Chem. Geol. 269, 396–405 (2010).CrossRefGoogle Scholar
  31. 31.
    Y. Liu, Z. Berner, H.-J. Massonne, and D. Zhong, “Carbonatite-Like Dykes from the Eastern Himalayan Syntaxis: Geochemical, Isotopic, and Petrogenetic Evidence for Melting of Metasedimentary Carbonate Rocks within the Orogenic Crust,” J. Asian Earth Sci. 26, 105–120 (2006).CrossRefGoogle Scholar
  32. 32.
    S. Mollo, M. Gaeta, C. Freda, T. Di Rocco, V. Misiti, and P. Scarlato, “Carbonate Assimilation in Magmas: A Reappraisal Based on Experimental Petrology,” Lithos 114, 503–514 (2010).CrossRefGoogle Scholar
  33. 33.
    V. M. Oversby and A. E. Ringwood, “Lead Isotopic Studies of Zirconolite and Perovskite and Their Implications for Long Range Synroc Stability,” Radioact. Waste Management 1, 289–307 (1981).Google Scholar
  34. 34.
    D. Roberts and K. B. Zwaan, “Marble Dykes Emanating from Marble Layers in an Amphibolite-Facies, Multiply-Deformed Carbonate Succession, Troms, Northern Norway,” Geol. Mag. 144(5), 883–888 (2007).CrossRefGoogle Scholar
  35. 35.
    E. H. Rutter, M. Casey, and L. Burlini, “Preferred Crystallographic Orientation Development During the Plastic and Superplastic Flow of Calcite Rocks,” J. Struct. Geol. 16, 1431–1446 (1994).CrossRefGoogle Scholar
  36. 36.
    Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment (Guidebook and Abstract Volume of the Siberian Workshop IGCP-480), Ed. by E. V. Sklyarov (IEC SB RAS, Irkutsk, 2005).Google Scholar
  37. 37.
    J. H. Vuorinen and A. D. L. Skelton, “Origin of Silicate Minerals in Carbonatites from Alno Island, Sweden: Magmatic Crystallization or Wall Rock Assimilation,” Terra Nova 16, 210–215 (2004).CrossRefGoogle Scholar
  38. 38.
    Y. Wan, D. Liu, Z. Xu, C. Dong, Z. Wang, H. Zhou, Z. Yang, Z. Liu, and J. Wu, “Paleoproterozoic Crust-ally Derived Carbonate-Rich Magmatic Rocks from the Daqinshan Area, North China Craton: Geological, Petrographical, Geochronological and Geochemical (Hf, Nd, O, and C) Evidence,” Amer. J. Sci. 308, 351–378 (2008).CrossRefGoogle Scholar
  39. 39.
    P. J. Wyllie and O. F. Tuttle, “The System CaO-CO2-H2O and the Origin of Carbonatites,” J. Petrol. 1(1), 1–46 (1960).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. V. Sklyarov
    • 1
    Email author
  • V. S. Fedorovsky
    • 2
  • A. B. Kotov
    • 3
  • A. V. Lavrenchuk
    • 4
  • A. M. Mazukabzov
    • 1
  • A. E. Starikova
    • 4
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Geological InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations