Geotectonics

, 45:317

Marginal seas—Terminological crisis

Article

Abstract

The terms marginal sea, peripheral sea, and backarc sea are widely used in the contemporary Russian geological literature as synonyms but do not have, in my opinion, unequivocal treatment. The application of the term marginal sea is briefly discussed. The seas of the Pacific transitional zone are reviewed. It is proposed to define a marginal sea as a marine basin a few thousand kilometers in extent and connected with the open ocean. Domains underlain by crust of the continental and oceanic types must coexist therein. The domains with oceanic crust are expressed in the topography as deepwater basins (one or several), where fragments of continental crust may also occur. A marginal sea must be bounded by at least one island arc.

References

  1. 1.
    G. P. Avdeiko and A. A. Polueva, “Olyutorka Earthquake as a Result of Interaction of Lithospheric Plates in the Koryakia-Kamchatka Region,” Vestnik KRAUNTs. Seriya Nauki o Zemle, No. 8, 54–68 (2006).Google Scholar
  2. 2.
    D. D. Agapitov, Candidate’s Dissertation in Geology and Mineralogy (Moscow State Univ., Moscow, 2004).Google Scholar
  3. 3.
    O. V. Belous and A. S. Svarichevsky, “Geomorphology of the Floor of the Bering Sea,” in Far East Seas of Russia, Book 3: Geological and Geophysical Studies, Ed. by R. G. Kulinich (Nauka, Moscow, 2007), pp. 323–345 [in Russian].Google Scholar
  4. 4.
    N. A. Bogdanov, “Continental Margins: General Structure and Tectonic Evolution,” in Basic Problems of General Tectonics, Ed. by Yu. M. Pushcharovsky (Nauchnyi Mir, Moscow, 2001), pp. 231–249 [in Russian].Google Scholar
  5. 5.
    N. A. Bogdanov, “Tectonics of the Arctic Ocean,” Geotektonika 38(3), 13–30 (2004) [Geotectonics 38 (3), 166–181 (2004)].Google Scholar
  6. 6.
    V. G. Varnavskiy, A. E. Zharov, G. L. Kirillova, et al., Geology and Petroleum Potential of the Okhotsk-Shantar Sedimentary Basin (DVO RAN, Vladivostok, 2002) [in Russian].Google Scholar
  7. 7.
    V. A. Vinogradov and S. S. Drachev, “Southwestern Shelf of the Laptev Sea and Tectonic Nature of Its Basement,” Dokl. Akad. Nauk 372(1), 72–74 (2000) [Dokl. Earth Sci. 372 (4), 601–603 (2000)].Google Scholar
  8. 8.
    Geological Glossary (Nedra, Moscow, 1973), Vol. 1 [in Russian].Google Scholar
  9. 9.
    Geology and Mineral Resources of Russian Shelves, Ed. by M. N. Alekseev (GEOS, Moscow, 2002) [in Russian].Google Scholar
  10. 10.
    Yu. B. Gladenkov, A. E. Shantser, A. I. Chelebaeva, et al., Lower Paleogene of Kamchatka (GEOS, Moscow, 1997) [in Russian].Google Scholar
  11. 11.
    V. V. Golozubov, Tectonics of the Jurassic and Lower Cretaceous Complexes in the Northwestern Framework of the Pacific Ocean (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  12. 12.
    A. E. Zharov, Geology and Cretaceous-Paleogene Geodynamics of Southeastern Sakhalin (Sakhalin obl. knizh. izd-vo, Yuzhno-Sakhalinsk, 2004) [in Russian].Google Scholar
  13. 13.
    A. D. Kazimirov, Nappes in the East of the Koryak Highland and Their Lithotectonic Homologues (Nauka, Moscow, 1985) [in Russian].Google Scholar
  14. 14.
    D. Karig, “Origin and Development of Marginal Basins in the Western Pacific,” J. Geophys. Res. 76(B11), 2542–2561 (1971); New Global Tectonics (Plate Tectonics) (Mir, Moscow, 1974), pp. 268–288.CrossRefGoogle Scholar
  15. 15.
    B. Ya. Karp, V. N. Karnaukh, S. N. Medvedev, et al., “Structure of Sedimentary Cover and Acoustic Basement of the Kurile Basin,” in Far East Seas of Russia, Book 3: Geological and Geophysical Studies, Ed. by R. G. Kulinich (Nauka, Moscow, 2007), pp. 165–180 [in Russian].Google Scholar
  16. 16.
    V. M. Kotlyakov and A. I. Komarova, Geography: Notations and Terms: Five-Language Academic Glossary: Russian-English-French-Spanish (Nauka, Moscow, 2007) [in Russian].Google Scholar
  17. 17.
    O. A. Krovushkina, “Structure and Petroleum Prospectivity of the Magadan Sedimentary Basin,” Geologiya Nefti Gaza, No. 6, (2001) (http://www.geolib.ru/Oil-GasGeo/2001/06/Stat/Stat02.html).
  18. 18.
    A. V. Lander, B. G. Bukchin, D. V. Droznin, and A. V. Kiryushin, “Tectonic Position and Parameters of Source of the Khailinsky (Koryak) Earthquake, March 8, 1991: Whether Does Beringia Plate Exist?” in Geodynamics and Prediction of Earthquakes. Computational Seismology (Nauka, Moscow, 1994), Issue. 26, pp. 103–122 [in Russian].Google Scholar
  19. 19.
    N. P. Laverov, S. S. Lappo, L. I. Lobkovskii, and E. A. Kulikov, “The Strongest Submarine and Catastrophic Earthquakes: Analysis, Modeling, and Prediction,” in Basic Studies of Oceans and Seas (Nauka, Moscow, 2006), pp. 191–209 [in Russian].Google Scholar
  20. 20.
    E. P. Lelikov, I. B. Tsoi, T. A. Emel’yanova, et al., “Geology of the Vityaz Submarine Ridge in a “Seismic Breaching”: Pacific Slope of the Kurile Island Arc,” Tikhookean. Geol. 27(2), 3–15 (2008).Google Scholar
  21. 21.
    L. I. Lobkovsky, R. E. Mazova, L. Yu. Kataeva, and B. V. Baranov, “Modeling of Tsunami in the Sea of Okhotsk on the Basis of Key Model of Subduction,” in Basic Studies of Oceans and Seas (Nauka, Moscow, 2006), pp. 292–303 [in Russian].Google Scholar
  22. 22.
    A. O. Mazarovich, Tectonic Evolution of South Primorye in Paleozoic and Early Mesozoic (Nauka, Moscow, 1985) [in Russian].Google Scholar
  23. 23.
    A. O. Mazarovich and S. Yu. Sokolov, “Tectonic Demarcation of the Chukchi and East Siberian Seas,” Rossiiskii Zhurnal Nauk o Zemle 5(3) (2003) (Electronic version in AGU website).Google Scholar
  24. 24.
    A. I. Malinovsky, P. V. Markevich, M. I. Tuchkova, et al., “Heavy Clastic Minerals of Terrigenous Rocks as Indicators of Geodynamic Settings in Paleobasins of Orogenic Regions in East Asia,” Vestnik KRAUNTs, Nauki o Zemle, No. 8, 97–111 (2006).Google Scholar
  25. 25.
    E. N. Melankholina, Tectonics of Northwest Pacific. Structural Relationships between Ocean and Continental Margin (Nauka, Moscow, 1988) [in Russian].Google Scholar
  26. 26.
    Yu. I. Mel’nichenko, “Bottom Topography and Morphotectonics of the Sea of Japan,” in Far East Seas of Russia, Book 3: Geological and Geophysical Studies, Ed. by R. G. Kulinich (Nauka, Moscow, 2007), pp. 17–25 [in Russian].Google Scholar
  27. 27.
    Yu. I. Mel’nichenko, A. S. Svarichevsky, O. V. Belous, and T. D. Leonova, “Bottom Topography and Morphotectonics of the Sea of Okhotsk,” in Far East Seas of Russia, Book 3: Geological and Geophysical Studies, Ed. by R. G. Kulinich (Nauka, Moscow, 2007), pp. 155–165 [in Russian].Google Scholar
  28. 28.
    Yu. P. Neprochnov, V. V. Sedov, L. R. Merklin, et al., “Tectonics of the Shirshov Ridge, the Bering Sea,” Geotektonika 19(3), 21–37 (1985).Google Scholar
  29. 29.
    Explanarory Notes to the Tectonic Map of the Sea of Okhotsk Region on a Scale of 1: 2500000, Ed. by N. A. Bogdanov and V. E. Khain (ILOVM RAN, Moscow, 2000) [in Russian].Google Scholar
  30. 30.
    Submarine Volcanism and Zoning of the Kurile Island Arc, Ed. by Yu. M. Pushcharovsky (Nauka, Moscow, 1992) [in Russian].Google Scholar
  31. 31.
    Yu. M. Pushcharovsky and E. N. Melankholina, Tectonic Evolution of the Earth: Pacific Ocean and Its Framework (Nauka, Moscow, 1992) [in Russian].Google Scholar
  32. 32.
    Yu. N. Raznitsin, Ophiolitic Allochthons and Adjacent Deepwater Basins in the Western Pacific Ocean (Nauka, Moscow, 1982) [in Russian].Google Scholar
  33. 33.
    A. G. Rodnikov, L. P. Zabarinskaya, V. B. Piip, et al., “Geotraverse of the Sea of Okhotsk Region,” Vestnik KRAUNTs, Seriya Nauki o Zemle, No. 5, 45–58 (2005).Google Scholar
  34. 34.
    N. I. Seliverstov, Geodynamics of Junction Zone of the Kurile-Kamchatka and Aleutian Island Arcs (KamGU, Petropavlovsk-Kamchatskii, 2009) [in Russian].Google Scholar
  35. 35.
    S. D. Sokolov, G. E. Bondarenko, O. L. Morozov, et al., “Paleoaccretionary Prism of the Taigonos Peninsula, Northeastern Russia,” Dokl. Akad. Nauk 377(6), 807–811 (2001) [Dokl. Earth Sci. 377 (3), 314–318 (2001)].Google Scholar
  36. 36.
    A. V. Solov’ev, “Tectonics of West Kamchatka from Fission Track Dating and Structural Analysis,” in West Kamchatka: Geological Evolution in Mesozoic (Nauchnyi Mir, Moscow, 2005), pp. 161–194 [in Russian].Google Scholar
  37. 37.
    Glossary of Geology, the Fourth Edition (Amer. Geol. Inst., Alexandria, 1997) [Glossary of English Geological Terms, Ed. by N. V. Mezhelovsky (Geokart, Moscow, 2002), Vols. 1, 2)].Google Scholar
  38. 38.
    V. E. Khain, Regional Geotectonics. Out-Alpine Asia and Australia (Nedra, Moscow, 1979) [in Russian].Google Scholar
  39. 39.
    V. E. Khain, Tectonics of Continents and Oceans (Year 2000) (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  40. 40.
    V. V. Kharakhinov, Petroleum Geology of the Sakhalin Region (Yuzhno-Sakhalinsk-Moscow, Nauchnyi Mir, 2010) [in Russian].Google Scholar
  41. 41.
    G. N. Chuyan, N. G. Razzhigaeva, and V. E. Bykasov, “Geomorphology of the Coastal Zone of Bering Island,” Trudy KF TIG DVO RAN, Issue V, 421–427 (2004) (http://www.terrakamchatka.org/publications/trudy/trudy5/19.htm).
  42. 42.
    E. V. Shipilov and G. A. Tarasov, Regional Geology of Petroliferous Sedimentary Basins of the West Arctic Shelf of Russia (KNTs RAN, Apatity, 1998) [in Russian].Google Scholar
  43. 43.
    O. A. Schmidt, Tectonics of Komandorsky Islands and Structure of Aleutian Island Chain (Nauka, Moscow, 1978) [in Russian].Google Scholar
  44. 44.
    M. G. Audley-Charles, “Ocean Trench Blocked and Obliterated by Banda Forearc Collision with Australian Proximal Continental Slope,” Tectonophysics 389, 65–79 (2004).CrossRefGoogle Scholar
  45. 45.
    P. Baillie, T. Fraser, R. Hall, and K. Myers, “Geological Development of Eastern Indonesia and the Northern Australia Collision Zone: a Review,” in Proceedings of the Timor Sea Symposium, Darwin, Northern Territory, Australia, June 19–10, 2003, Ed by G. K. Ellis, P. W. Baillie, and T. J. Munson (Northern Territory Geological Survey Spe. Publ., 2004), vol. 1, pp. 539–550.Google Scholar
  46. 46.
    B. V. Baranov, R. Werner, K. A. Hoernle, et al., “Evidence for Compressionally Induced High Subsidence Rates in the Kurile Basin (Okhotsk Sea),” Tectonophysics 350, 63–97 (2002).Google Scholar
  47. 47.
    T. F. W. Barth, “Geology and Petrology of the Pribilof Islands, Alaska,” U.S. Geol. Surv. Bull., No. 1028, 1–64 (1956).Google Scholar
  48. 48.
    R. L. Bruhn, W. T. Parry, and M. P. Bunds, “Tectonics, Fluid Migration, and Fluid Pressure in a Deformed Forearc Basin, Cook Inlet, Alaska,” Geol. Soc. Amer. Bull. 112(4), 550–563 (2000).CrossRefGoogle Scholar
  49. 49.
    V. D. Chekhovich, D. V. Kovalenko, and G. V. Ledneva, “Cenozoic History of the Bering Sea and Its Northwestern Margin,” The Island Arc 8(2), 168–180 (1999).CrossRefGoogle Scholar
  50. 50.
    D. Cluzel, S. Meffre, P. Maurizot, and A. J. Crawford, Earliest Eocene (53 Ma) Convergence in the Southwest Pacific: Evidence from Perobduction Dikes in the Ophiolite of New Caledonia (http://hal.archives-ouvertes.rf/docs/00/09/47/96/pdf/53MaSubductTER.pdf/).
  51. 51.
    CNSS Earthquake Composite Catalog, June 1997 (http://quake.geo.berkeley.edu/cnss/; http://earthquake.usgs.gov/eqcenter/).
  52. 52.
    J. Collot, L. Geli, Y. Lafoy, et al., “Tectonic History of Northern New Caledonia Basin from Deep Offshore Seismic Reflection: Relation to Late Eocene Obduction in New Caledonia, Southwest Pacific,” Tectonics, (2008) (http://hal.archives-ouvertes.rf/docs/00/35/69/66/pdf/).
  53. 53.
    J. A. Conder and D. A. Wiens, “Seismic Structure Beneath the Tonga Arc and Lau Back-Arc Basin Determined from Joint V p, V p/V s Tomography,” Geoch. Geophys. Geosyst. 7(3), 1–21 (2006).Google Scholar
  54. 54.
    N. F. Exon, Y. Lafoy, P. J. Hill, et al., “Geology and Petroleum Potential of the Fairway Basin in the Tasman Sea,” Austral. J. Earth Sci. 54, 629–645 (2007).CrossRefGoogle Scholar
  55. 55.
    G. J. Fryer, PhilipW. Lincoln, and F. Pratson, “Source of the Great Tsunami of 1 April 1946: A Landslide in the Upper Aleutian Forearc,” Mar. Geol. 203, 201–218 (2004).CrossRefGoogle Scholar
  56. 56.
    C. Gaina, W. R. Roest, R. D. Müller, and P. Symonds, “The Opening of the Tasman Sea: A Gravity Anomaly Animation,” Earth Interaction, 1–23 (1998).Google Scholar
  57. 57.
    C. Gaina and D. Müller, “Cenozoic Tectonic and Depth/Age Evolution of the Indonesian Gateway and Associated Back-Arc Basins,” Earth-Sci. Rev. 83, 177–203 (2007).CrossRefGoogle Scholar
  58. 58.
    E. Grácia and J. Escartin, “Crustal Accretion at Mid-Ocean Ridges and Back-Arc Spreading Centers: Insights from the Mid-Atlantic Ridge, the Bransfield Basin and the North Fiji Basin,” Contrib. Sci. 1(2), 175–192 (1999).Google Scholar
  59. 59.
    J. Greinert, S. M. Bollwerk, A. Derkachev, et al., “Massive Barite Deposits and Carbonate Mineralization in the Derugin Basin, Sea of Okhotsk: Precipitation Processes at Cold Seep Sites,” Earth Planet. Sci. Lett. 203, 165–180 (2002).CrossRefGoogle Scholar
  60. 60.
    R. Hall, “Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animation,” J. Southeast Asian Earth Sci. 20, 353–431 (2002).Google Scholar
  61. 61.
    R. Hall, “Continental Growth at the Indonesian Margins of Southeast Asia,” in Ores and Orogenesis: Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits, Ed. by J. E. Spencer and S. R. Titley (Arizona Geol. Soc. Digest, 2008), Vol. 22, pp. 245–258.Google Scholar
  62. 62.
    R. Hall, G. Nichols, P. Ballantyne, et al., “The Character and Significance of Basement Rocks of the Southern Molucca Sea Region,” J. Southeast Asian Earth Sci. 6(3/4), 249–258 (1991).CrossRefGoogle Scholar
  63. 63.
    R. Hall and M. E. J. Wilson, “Neogene Sutures in Eastern Indonesia,” J. Asian Earth Sci. 18, 781–808 (2000).CrossRefGoogle Scholar
  64. 64.
    R. Hall and C. K. Morley, “Sundaland Basins,” in Continent-Ocean Interactions within East Asian Marginal Seas (Geophys. Monograph Ser., 2004), Vol. 149, pp. 55–85.Google Scholar
  65. 65.
    D. Hindle, K. Fujita, and K. Mackey, “Current Deformation Rates and Extrusion of the Northwestern Okhotsk Plate, Northeast Russia,” Geophys. Rev. Lett. 33, L02306 (2006). doi: 10.1029/2005GL024814.CrossRefGoogle Scholar
  66. 66.
    J. V. Howell, Glossary of Geology and Related Sciences (Amer. Geol. Inst., Washington, 1960).Google Scholar
  67. 67.
    M. Joshima, Y. Okuda, F. Murakami, et al., “Age of the Solomon Sea Basin from Magnetic Lineations,” J. Geophys. Res. 6(B4), 229–234 (1987).Google Scholar
  68. 68.
    Y. Kido, K. Suyehiro, and H. Kinoshita, “Rifting to Spreading Process along the Northern Continental Margin of the South China Sea,” Mar. Geophys. Res. 22, 1–15 (2001).CrossRefGoogle Scholar
  69. 69.
    G. Laske and G. A. Masters, “Global Digital Map of Sediment Thickness,” EOS Trans. AGU, 78, F483 (1997) (http://mahi.ucsd.edu/Gabi/sediment.html).Google Scholar
  70. 70.
    G. H. Lee, B. Kim, Shin K. Sun, and D. Sunwoo, “Geologic Evolution and Aspects of the Petroleum Geology of the Northern East China Sea Shelf Basin,” AAPG Bulletin 90(2), 237–260 (2006).CrossRefGoogle Scholar
  71. 71.
    S. D. Lewis, “Geophysical Setting of the Sulu and Celebes Seas,” Proc. ODP, Sci. Results 124, 65–73 (1991).Google Scholar
  72. 72.
    H. Lu and D. Hayashi, “Genesis of Okinawa Trough and Thrust Development within Accretionary Prism by Means of 2D Finite Element Method,” J. Tectonic Res. Group Japan, No. 45, 47–64 (2001).Google Scholar
  73. 73.
    P. Maillet, M. Monzier, J.-Ph. Eissen, and R. Louat, “Geodynamics of an Arc-Ridge Junction: the Case of the New Hebrides Arc/North Fiji Basin,” Tectonophysics 165, 251–268 (1989).CrossRefGoogle Scholar
  74. 74.
    M. S. Marlow, H. McLein, T. Vallier, et al., “Preliminary Report of the Regional Geology, Oil, and Gas Potential and Enviromental Hazards of Bering Sea Shelf South of the of St. Lawrence Island, Alaska,” USGS Open-file Report 76-785, (1976) (www.dggs.dnr.state.ak.us/webpubs/usgs/of/text/of76-0785.pdf).
  75. 75.
    R. McCaffrey, “Earthquakes and Ophiolite Emplacement in the Molucca Sea Collision Zone, Indonesia,” Tectonics 10(2), 433–453 (1991).CrossRefGoogle Scholar
  76. 76.
    N. Mortimer, I. J. Graham, C. J. Adams, et al., Relationships between New Zealand, Australian and New Caledonian Mineralised Terranes: A Regional Geological Framework (www.crownminerals.govt.nz/cms/pdf-library/minerals/conferences-1/151_papers_42.pdf. p.151–159).
  77. 77.
    N. Mortimer, R. H. Herzer, P. B. Gans, et al., “Oligocene-Miocene Tectonic Evolution of the South Fiji Basin and Northland Plateau, SW Pacific Ocean: Evidence from Petrology and Dating of Dredged Rocks,” Mar. Geol. 237(1/2), 1–24 (2007).CrossRefGoogle Scholar
  78. 78.
    R. D. Müller, C. Gaina, and S. Clark, “Seafloor Spreading Around Australia,” in Billion-Year Earth History of Australia and Neighbours in Gondwanaland (simula.no/research/scientific/publications/Simula.SC.154/simula_pdf_file).
  79. 79.
    Y. Ohara, K. Fujioka, T. Ishii, and H. Yurimoto, “Peridotites and Gabbros from the Parece Vela Backarc Basin: Unique Tectonic Window in An Extinct Backarc Spreading Ridge,” Geochem. Geophys. Geosyst. 8611(4(7)) (2003). doi: 10.1029/2002GC000469.Google Scholar
  80. 80.
    J.-O. Park, H. Tokuyama, M. Shinohara, et al., “Seismic Record of Tectonic Evolution and Backarc Rifting in the Southern Ryukyu Island Arc System,” Tectonophysics 294, 21–42 (1998).CrossRefGoogle Scholar
  81. 81.
    W. W. Patton, M. A. Lanphere, Jr., T. P. Miller, and R. A. Scott, “Age and Tectonic Significance of Volcanic Rocks on St. Matthew Island, Bering Sea, Alaska,” USGS Open-File Report 75-150 (1975) (www.dggs.dnr.state.ak.us/webpubs/usgs/of/text/of75-0150.pdf).
  82. 82.
    M. G. Petterson, T. Babbs, C. R. Neal, et al., “Geological-Tectonic Framework of Solomon Islands, SW Pacific: Crustal Accretion and Growth within an Intra-Oceanic Setting,” Tectonophysics 301, 35–60 (1999).CrossRefGoogle Scholar
  83. 83.
    J. Robert, R. J. Stern, M. J. Fouch, and S. L. Klemperer, An overview of the Izu-Bonin-Mariana Subduction Factory (www.nsf-margins.org/SF/I-B-M/IBM2002/).
  84. 84.
    E. Ruellan and Y. Lagabrielle, “Oceanic Subductions and Active Spreading in the Southwest Pacific,” Géomorphologie: Relief, Processus, Environnement 2, 121–142 (2005) (http://geomorphologie.revues.org/index307html).Google Scholar
  85. 85.
    M. Sdrolias, R. D. Müller, and C. Gaina, “Plate Tectonic Evolution of Eastern Australian Marginal Ocean Basins,” in PESA Eastern Australasian Basins Symposium Melbourne, November 25–28, 2001 (2001), pp. 227–237.Google Scholar
  86. 86.
    M. Sdrolias, R. D. Müller, A. Mauffret, and G. Bernardel, “Enigmatic Formation of the Norfolk Basin, SW Pacific: A Plume Influence on Back-Arc Extension,” Geochem. Geophys.Geosyst. 5(6), 1–28 (2004).CrossRefGoogle Scholar
  87. 87.
    J.-C. Sibuet, B. Deffontaines, S.-K. Hsu, N. Thareau, J.-P. Le Formal, C.-S. Liu, and the ACT Party, “Okinawa Trough Backarc Basin: Early Tectonic and Magmatic Evolution,” J. Geophys. Res. 103, 30245–30267 (1998).CrossRefGoogle Scholar
  88. 88.
    H. U. Sverdrup, M. W. Johnson, and R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice Hall, New York, 1942).Google Scholar
  89. 89.
    H. M. J. Stagg, I. Borissova, M. Alcock, and A. M. G. Moore, “Tectonic Provinces of the Lord Howe Rise: “Law of the Sea” Study Has Implications for Frontier Hydrocarbons,” AGSO Research Newsletter, No. 31 (1999) (http://www.agsogov.au/informa-tion/publications/resnews/).
  90. 90.
    C. Widiwijayanti, V. Mikhailov, M. Diament, et al., “Structure and Evolution of the Molucca Sea Area: Constraints Based on Interpretation of a Combined Sea-Surface and Satellite Gravity Dataset,” Earth Planet. Sci. Lett. 215, 135–150 (2003).CrossRefGoogle Scholar
  91. 91.
    D. J. Wright and S. H. Bloomer, C. J. MacLeod, B. Taylor, and A. M. Goodlife, “Bathymetry of the Tonga Trench and Forearc: a Map Series,” Mar. Geophys. Res. 21, 489–511 (2000).CrossRefGoogle Scholar
  92. 92.
    X. Xie, R. D. Muller, S. Li, et al., “Origin of Anomalous Subsidence along the Northern South China Sea Margin and Its Relationship to Dynamic Topography,” Mar. Petrol. Geol. 23, 745–765 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations