, Volume 45, Issue 1, pp 1–22

Stabilization and breakdown of Archean Cratons: Formation of sedimentary basins, mafic magmatism, and metallogenic productivity



The Kenorland supercontinent was created as a result of the ascent of the most powerful mantle plumes in the Earth’s geological history and accompanied by the formation of the continental crust and its subsequent accretion into a supercontinent 2.7 Ga ago. The geological phenomena that occurred at that time in Australia, Canada, and South Africa reflecting its features are considered in this paper. The first sedimentary basins resting upon the sialic basement give evidence for long-existing peneplanes formed in the Early Precambrian, i.e., for stabilization of the underlying cratons; this is also supported by the appearance of rapakivi granite 2.8 Ga ago. The platform regime existed as early as the Mesoarchean 3.5 Ga ago. The platform sedimentary basins developed almost continuously over a billion years. Layered mafic intrusions were frequently emplaced into sedimentary sequences. Unique gold, uranium, PGE, chrome, and other deposits are hosted in sedimentary basins and layered intrusions. The extremely high intensity of plume activity determined the origin and breakdown of the Kenorland supercontinent and the cause of transport of ore elements concentrated in unique deposits. In terms of the intensity of plume-related magmatism and ore formation, the considered period of geological history has no more recent analogues and was critical for the Earth’s evolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. V. Bredanova and A. A. Migdisov, “Kaapvaal Craton, South Africa,” in Sedimentation in Early Precambrian: Types of Sediments, Metamorphosed Sedimentary Basins, and Evolution of Terrigenous Rocks (Nauchnyi Mir, Moscow, 2006), pp. 125–141 [in Russian].Google Scholar
  2. 2.
    Archean Geology and Geodynamics (Tsentr Inf. Kul’tury, St. Petersburg, 2005) [in Russian].Google Scholar
  3. 3.
    V. M. Grigor’ev, “Ferrous Metals,” in Metallic Mineral Deposits, Ed. by V.I. Starostin and V.M. Grigor’ev (Informmark, Moscow, 1998), pp. 4–26 [in Russian].Google Scholar
  4. 4.
    Z. Kukal, The Rate of Geological Processes (Mir, Moscow, 1987; Earth-Sci. Rev. 28 1–284, 1990) [in Russian].Google Scholar
  5. 5.
    A. M. Larin, “Rapakivi Granites in the Geological History of the Earth. Part 1, Magmatic Associations with Rapakivi Granites: Age, Geochemistry, and Tectonic Setting,” Stratigr. Geol. Korrelyatsiya 17(3), 3–28 (2009) [Stratigr. Geol. Correlation 17 (3), 235–258 (2009)].Google Scholar
  6. 6.
    Yu. G. Leonov, “Continental Rifting: Modern Views, Problems and Solutions,” Geotektonika, 35(2), 3–16 (2001) [Geotectonics 25 (2), 81–92 (2001)].Google Scholar
  7. 7.
    O. M. Rosen and A. A. Yaroshevsky, “Direct Evidence for Sedimentation in Early Precambrian,” in Sedimentation in Early Precambrian: Types of Sediments, Metamorphosed Sedimentary Basins, and Evolution of Terrigenous Rocks (Nauchnyi Mir, Moscow, 2006), pp. 22–33 [in Russian].Google Scholar
  8. 8.
    O. M. Rosen, A. A. Shchipansky, and O. M. Turkina, Geodynamic of the Early Earth: Evolution and Stability of Geological Processes (Ophiolites, Island Arcs, Cratons, Seimentary Basins) (Nauchnyi Mir, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    V. N. Sergeev, M. A. Semikhatov, M. A. Fedonkin, et al., “Principal Stages in Evolution of Precambrian Organic World: Communication 1. Archean and Early Proterozoic,” Stratigr. Geol. Korrelyatsiya 15(2), 3–39 (2007) [Stratigr. Geol. Correlation 15 (2), 141–160 (2007)].Google Scholar
  10. 10.
    I. M. Simanovich, “Auriferous Precambrian Conglomerates of Witwatersrand,” Litol. Polezn. Iskop. 44(5), 543–558 (2009) [Lithol. Miner. Res. 44 (5) 497–509 (2009)].Google Scholar
  11. 11.
    Stratigraphic Code of the USSR, Ed. by A.I. Zhamoida, et al. (VSEGEI, Leningrad, 1977) [in Russian].Google Scholar
  12. 12.
    A. V. Tkachev, “Global Analysis of Spatotemporal Features of Formation and Localization of Large and Superlarge Deposits,” in Large and Superlarge Ore Deposits, Ed. by D.V. Rundqvist (IGEM, Moscow, 2006), pp. 49–147 [in Russian].Google Scholar
  13. 13.
    Glossary of Geology, 4th Edit. (American Geol. Inst., Alexandria, 1997; Geokart, Moscow, 2002).Google Scholar
  14. 14.
    V. P. Trubitsyn, “Principles of the Tectonics of Floating Continents,” Fiz. Zemli 36(9), 3–41 (2000) [Izv. Physics Solid Earth 36 (9), 708–741 (2000)].Google Scholar
  15. 15.
    V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  16. 16.
    A. D. Khar’kiv, E. F. Roman’ko, and B. M. Zubarev, “Kimberlites of Zimbabave: Bried Characterization,” Geol. Geofiz. 46(3), 318–327 (2005).Google Scholar
  17. 17.
    E. V. Sharkov, Formation of Layered Intrusions and Related Mineralization (Nauchnyi Mir, Moscow, 2006) [in Russian].Google Scholar
  18. 18.
    D. L. Anderson, “Superplumes or Supercontinents?,” Geology 22, 39–42 (1994).Google Scholar
  19. 19.
    R. A. Armstrong and A. H. Wilson, “A SHRIMP U-Pb Study of Zircons from the Layered Sequence of the Great Dyke, Zimbabwe, and a Granitoid Anatectic Dyke,” Earth Planet. Sci. Lett. 180(1–2), 1–12 (2000).Google Scholar
  20. 20.
    M. E. Barley, “Volcanic, Sedimentary and Tectonostratigraphic Environments of the ∼3.46 Ga Warrawoona Megasequence: a Review,” Precambr. Res. 60, 47–67 (1993).Google Scholar
  21. 21.
    S.-J. Barnes and W. D. Maier, “Platinum-Group Elements and Microstructures of Normal Merensky Reef from Impala Platinum Mines, Bushveld Complex,” J. Petrol. 43(1), 103–128 (2002).Google Scholar
  22. 22.
    W. Bleeker, “The Late Archean Record: a Puzzle in Ca. 35 Pieces,” Lithos. 71, 99–134 (2003).Google Scholar
  23. 23.
    K. L. Buchan, J. Goutier, M. A. Hamilton, et al., “Paleomagnetism, U-Pb Geochronology, and Geochemistry of Lac Esprit and Other Dyke Swarms, James Bay Area, Quebec, and Implications for Paleoproterozoic Deformation of the Superior Province,” Can. J. Earth Sci. 44(5), 643–664 (2007).Google Scholar
  24. 24.
    P. C. Buchanan and W. U. Reimold, “Studies of the Rooiberg Group, Bushveld Complex, South Africa: No Evidence for an Impact Origin,” Earth Planet. Sci. Lett. 155, 149–165 (1998).Google Scholar
  25. 25.
    I. H. Campbell, J. Naldrett, and S. J. Barnes, “A Model for the Origin of the Platinum-Rich Sulfide Horizons in the Bushveld and Stillwater Complexes,” J. Petrol. 24(2), 133–165 (1983).Google Scholar
  26. 26.
    R. G. Cawthorn, “Cr and Sr: Keys to Parental Magmas and Processes in the Bushveld Complex, South Africa,” Lithos. 95, 381–398 (2007).Google Scholar
  27. 27.
    R. G. Cawthorn and G. Davies, “Experimental Data at 3 Kbars Pressure on Parental Magma to the Bushveld Complex,” Contrib. Mineral. Petrol. 83, 128–135 (1983).Google Scholar
  28. 28.
    R. G. Cawthorn and F. Walraven, “Emplacement and Crystallization Time for the Bushveld Complex,” J. Petrol. 39(9), 1669–1687 (1998).Google Scholar
  29. 29.
    W. J. Collins, “Slab Pull, Mantle Convection, and Pangaean Assembly and Dispersal,” Earth Planet. Sci. Lett. 205, 225–237 (2003).Google Scholar
  30. 30.
    K. C. Condie, Archean Greenstone Belts (Elsevier, Amsterdam, 1981).Google Scholar
  31. 31.
    K. C. Condie, “Episodic Continental Growth and Supercontinents a Mantle Avalanche Connection?,” Earth Planet Sci Lett. 163, 97–108 (1998).Google Scholar
  32. 32.
    K. C. Condie, Mantle Plumes and Their Record in Earth History (Cambridge University Press, Cambridge, 2001).Google Scholar
  33. 33.
    K. C. Condie, “What on Earth Happened 2.7 Billion Years Ago?” Geophys. Res. Abstracts 5, 01269 (2003).Google Scholar
  34. 34.
    C. Crow and K. C. Condie, “Geochemistry and Origin of Early Proterozoic Volcanic Rocks from the Transvaal and Soutpansberg Successions, South Africa,” Precambr. Res. 47, 17–26 (1990).Google Scholar
  35. 35.
    I. W. D. Dalziel, L. A. Lawver, and J. B. Murphy, “Plumes, Orogenesis and Supercontinent Formation,” Earth Planet. Sci. Lett. 178, 1–11 (2000).Google Scholar
  36. 36.
    G. Davies and M. Tredoux, “The Platinum-Group Element and Gold Contents of the Marginal Rocks and Sills of the Bushveld Complex,” Econ. Geol. 80, 838–848 (1985).Google Scholar
  37. 37.
    S. A. de Waal, W. D. Maier, C. D. K. Gauert, and R. A. Armstrong, “Parental Magma and Emplacement of the Stratiform Uitkomst Complex, South Africa,” Can. Mineral. 39, 557–572 (2001).Google Scholar
  38. 38.
    M. de Wit and J. Tinker, “Crustal Structures across the Central Kaapvaal Craton from Deep-Seismic Reflection Data,” South African J. Geol. 107, 185–206 (2004).Google Scholar
  39. 39.
    Greenstone Belts, Ed. by M. de Wit and L.D. Ashwall (Monographs on Geology and Geophysics, Oxford, 1997).Google Scholar
  40. 40.
    P. H. G. M. Dirks and H. A. Jelsma, “Crust-Mantle Decoupling and the Growth of the Archaean Zimbabwe Craton,” J. African Earth Sci. 34, 157–166 (2002).Google Scholar
  41. 41.
    N. L. Dobretsov, A. A. Kirdyashkin, A. G. Kirdyashkin, et al., “Modeling of Thermochemical Plumes and Implications for the Origin of the Siberian Traps,” Lithos 100, 66–92 (2008).Google Scholar
  42. 42.
    G. N. Eby, “The A-Type Granitiods; a Review of Their Occurence and Chemical Characteristics, Nd Speculations on Their Petrogenesis,” Lithos. 261, 115–134 (1990).Google Scholar
  43. 43.
    K. A. Eriksson and J. A. Donaldson, “Basinal and Shelf Sedimentation in Relation to the Archaean-Proterozoic Boundary,” Precambr. Res. 33, 103–121 (1986).Google Scholar
  44. 44.
    K. A. Eriksson and C. M. Fedo, “Archean Synrift and Stable Shield Sedimentary Successions,” in Archean Crustal Evolution, Ed. by K.C. Condie (Elsevier, Amsterdam, 1994), pp. 171–204.Google Scholar
  45. 45.
    P. G. Eriksson, O. Catuneanu, D. R. Nelson, et al., “Towards a Synthesis,” in The Precambrian Research Earth: Tempos and Events, Ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, and O. Catuneanu (Elsevier, Amsterdam, 2004), pp. 739–771.Google Scholar
  46. 46.
    R. E. Ernst, “Mafic-Ultramafic Large Igneous Provinces (LIPs): Importance of the Pre-Mesozoic Record,” Episodes 30, 108–115 (2007).Google Scholar
  47. 47.
    R. E. Ernst and K. Bell, “Petrology of the Great Abitibi Dyke, Superior Province,” J. Petrol. 33, 423–469 (1992).Google Scholar
  48. 48.
    R. Ernst, J. Head, E. Parfitt, et al., “Giant Radiating Dyke Swarms on Earth and Venus,” Earth-Sci. Rev. 39, 1–58 (1995).Google Scholar
  49. 49.
    M. J. Fouch, D. E. James, J. C. Van Decar, and S. van der Lee, “Mantle Seismic Structure Beneath the Kaapvaal and Zimbabwe Cratons,” South African J. Geol. 107, 33–44 (2004).Google Scholar
  50. 50.
    H. E. Frimmel, “Archaean Atmospheric Evolution: Evidence from the Witwatersrand Gold Fields, South Africa,” Earth-Sci. Rev. 70, 1–46 (2005).Google Scholar
  51. 51.
    H. E. Frimmel and W. E. L. Minter, “Recent Developments Concerning the Geological History and Genesis of the Witwatersrand Gold Deposits,” South Africa. Soc. Econ. Geol. Spec, No. 2, 17–45 (2002).Google Scholar
  52. 52.
    Glossary of Geology, 4th Edit (American Geological Institute, Alexandria, 1997).Google Scholar
  53. 53.
    D. E. Grandstaff, M. J. Edelman, R. W. Foster, et al., “Chemistry and Mineralogy of Precambrian Research Paleosols at the Base of the Dominion and Pongola Groups (Transvaal, South Africa),” Precambr. Res. 32, 97–131 (1986).Google Scholar
  54. 54.
    M. Gurnis, “Large-Scale Mantle Convection and the Aggregation and Dispersal of Supercontinents,” Nature 332, 695–699 (1988).Google Scholar
  55. 55.
    I. Haapala, “Metallogeny of the Rapakivi Granites,” Mineral. Petrol. 54, 149–160 (1995).Google Scholar
  56. 56.
    R. P. Hall and D. J. Hughes, “Noritic Dykes of Southern West Greenland: Early Proterozoic Boninitie Magmatism,” Contrib. Mineral. Petrol. 97, 169–182 (1987).Google Scholar
  57. 57.
    H. C. Halls, “The Matachewan Dyke Swarm, Canada: An Early Proterozoic Magnetic Field Reversal,” Earth and Planet Sci. Lett. 105, 279–292 (1991).Google Scholar
  58. 58.
    H. C. Halls and B. Zhang, “Crustal Uplift in the Southern Superior Province, Canada, Revealed by Paleomagnetism,” Tectonophysics 362, 123–136 (2003).Google Scholar
  59. 59.
    R. E. Hanson, W. A. Gose, J. L. Crowley, et al., “Paleoproterozoic Intraplate Magmatism and Basin Development on the Kaapvaal Craton: Age. Paleomagnetism and Geochemistry of ∼1.93 to ∼1.87 Ga Post-Waterberg Dolerites,” South African J. Geol. 107, 233–254 (2004).Google Scholar
  60. 60.
    C. J. Hatton, “Mantle Plume Origin for the Bushveld and Ventersdorp Magmatic Provinces,” J. African Earth Sci. 21, 571–577 (1995).Google Scholar
  61. 61.
    L. M. Heaman, “Global Mafic Magmatism Igneous Province?” Geology 25(4), 299–302 (1997).Google Scholar
  62. 62.
    H. Helmstaedt and J. J. Gurney, “Formation of the Archean Kaapvaal Province Revisited: Implications for the Birth and Growth of Its Diamondiferous Root,” Lithos 71(2/4), 153–184 (2003).Google Scholar
  63. 63.
    I. R. Hill, “Starting Plumes and Continental Break-Up,” Earth Planet. Sci. Lett. 104, 398–416 (1991).Google Scholar
  64. 64.
    K. Hirose, “Postperovskite Phase Transition and Its Geophysical Implications,” Rev. Geophys. 44(3), RG3001 (2006).Google Scholar
  65. 65.
    L. Holzer, R. Frei, and J. M. Barton, Jr., “Unraveling the Record of Successive High-Grade Events in the Central Zone of the Limpopo Belt Using Pb Single Phase Dating of Metamorphic Minerals,” Precambr. Res. 87, 87–115 (1998).Google Scholar
  66. 66.
    J. R. Hopper, T. Dahl-Jensen, W. S. Holbrook, H. C. Larson, D. Lizarralde, J. Korenaga, G. M. Kent, and P. B. Kelemen, “Structure of the SE Greenland Margin from Seismic Reflection and Refraction Data: Implications for Nascent Spreading Centre Subsidence and Asymmetric Crustal Accretion During North Atlantic Opening,” J. Geophys. Res. 108(B5), 13-1–13-22, 2269 (2003).Google Scholar
  67. 67.
    D. Huston, P. Morant, F. Pirajno, et al., “Paleoarchean Mineral Deposits of the Pilbara Craton: Genesis, Tectonic Environment and Comparisons with Younger Deposits,” in Earth’s Oldest Rocks (Elsevier, Amsterdam, 2007), pp. 411–450.Google Scholar
  68. 68.
    A. L. Jaques, H. St. C. O’Neill, C. B. Smith, et al., “Diamondiferous Peridotite Xenoliths from the Argyle (AK1) Lamproite Pipe, Western Australia,” Contrib. Mineral. Petrol. 104, 255–276 (1990).Google Scholar
  69. 69.
    H. A. Jelsma, A. Kröner, N. Bozhko, and C. Stowe, “Single Zircon Ages for Two Archean Banded Migmatitic Gneisses from Central Zimbabwe,” South African J. Geol. 107, 577–586 (2004).Google Scholar
  70. 70.
    H. A. Jelsma, M. L. Vinyu, P. J. Valbracht, et al., “Constraints on Archaean Crustal Evolution of the Zimbabwe Craton: a U-Pb Zircon, Sm-Nd and Pb-Pb Whole-Rock Isotope Study,” Contrib. Mineral. Petrol. 124, 55–70 (1996).Google Scholar
  71. 71.
    M. K. Kaban, I. M. Artemieva, P. Schwintzer, and W. D. Mooney, “Estimating the Density of the Continental Roots: Compositional and Thermal Effects,” Lithos 71(2/4) (2003).Google Scholar
  72. 72.
    F. Kalsbeek and P. N. Taylor, “Chemical and Isotopic Homogeneity of a 400 km Long Basic Dyke in Central West Greenland,” Contrib. Mineral. Petrol. 93, 439–448 (1986).Google Scholar
  73. 73.
    S. L. Kamo, W. U. Reimold, T. E. Krogh, and W. P. Colliston, “A 2.023 Ga Age for the Vredefort Impact Event and a First Report of Shock Metamorphosed Zircons in Pseudotachylitic Breccias and Granophyre,” Earth Planet. Sci. Lett. 144, 369–387 (1996).Google Scholar
  74. 74.
    R. K. Kelly, P. B. Kelemen, and M. Jull, “Buoyancy of the Continental Upper Mantle,” Geochem. Geophys. Geosyst. 4(2), 1017 (2002).Google Scholar
  75. 75.
    C. Klein and N. J. Beukes, “Proterozoic Iron-Formations,” in Archean Crustal Evolution, Ed. by K.C. Condie (Elsevier, Amsterdam, 1994), pp. 383–418.Google Scholar
  76. 76.
    D. D. Klemm, “The Formation of Paleoproterozoic Banded Iron Formations and Their Associated Fe and Mn Deposits, with Reference to the Griqualand West Deposits. South Africa,” J. African Earth Sci. 30(1), 1–24 (2000).Google Scholar
  77. 77.
    N. Kositcin and B. Krapez, “Relationship Between Detrital Zircon Age Spectra and the Tectonic Evolution of the Late Archaean Witwatersrand Basin, South Africa,” Precambr. Res. 129, 141–168 (2004).Google Scholar
  78. 78.
    B. Krapez, “Sequence Stratigraphy of the Archaean Supracrustal Belts of the Pilbara Block, Western Australia,” Precambr. Res. 60, 1–45 (1993).Google Scholar
  79. 79.
    T. M. Kusky, “Tectonic Setting and Terrane Accretion of the Archean Zimbabwe Craton,” Geology 26(2), 163–166 (1998).Google Scholar
  80. 80.
    C. Li, E. M. Ripley, W. D. Maier, and T. E. S. Gomwe, “Olivine and Sulfur Isotopic Compositions of the Uitkomst Ni-Cu Sulfide Ore-Bearing Complex, South Africa: Evidence for Sulfur Contamination and Multiple Magma Emplacements,” Chem. Geol. 188, 149–159 (2002).Google Scholar
  81. 81.
    R. Macdonald, L. Wilson, R. S. Thorpe, and A. Martin, “Emplacement of the Cleveland Dyke: Evidence from Geochemistry, Mineralogy and Physical Modeling,” J. Petrol. 29, 559–583 (1988).Google Scholar
  82. 82.
    T. D. Manyeruke, T. G. Blenkinsop, P. Buchholz, et al., “The Age and Petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: First Evidence for Early Paleoproterozoic Magmatism in Zimbabwe,” J. African Earth Sci. 40, 281–292 (2004).Google Scholar
  83. 83.
    H. Martin, “Archean Grey Gneisses and the Genesis of Continental Crust,” in Archean Crustal Evolution, Ed. by K.C. Condie (Elsevier, Amsterdam, 1994), pp. 205–260.Google Scholar
  84. 84.
    S. Maruyama, M. Santosh, and D. Zhao, “Superplume, Supercontinent, and Post-Perovskite: Mantle Dynamics and Anti-Plate Tectonics on the Core-Mantle Boundary,” Gondwana Research 11, 7–37 (2007).Google Scholar
  85. 85.
    S. McCourt, “The Crustal Architecture of the Kaapvaal Crustal Block, South Africa, between 3.5 and 2.0 Ga: A Synopsis,” Mineral. Deposita 30, 89–97 (1995).Google Scholar
  86. 86.
    S. M. Moorbath, “Ages, Isotopic and Chemical Evolution of Precambrian Continental Crust,” Chem. Geol. 20, 151–187 (1977).Google Scholar
  87. 87.
    M. Moore, D. W. Davis, L. J. Robb, et al., “Archean Rapakivi Granite-Anorthosite-Rhyolite Complex in the Witwatersrand Basin Hinterland, Southern Africa,” Geology 21, 1031–1034 (1993).Google Scholar
  88. 88.
    D. E. Moser, R. M. Flowers, and R. J. Hart, “Birth of the Kaapvaal Tectosphere 3.08 Billion Years Ago,” Science 291, 465–468 (2001).Google Scholar
  89. 89.
    S. B. Mukasa, A. H. Wilson, and R. W. Carlson, “A Multielement Geochronologic Study of the Great Dyke, Zimbabwe: Significance of the Robust and Reset Ages,” Earth.Planet. Sci. Lett. 164, 353–369 (1998).Google Scholar
  90. 90.
    A. J. Naldrett, A. Wilson, J. Kinnaird, and G. Chunnett, “PGE Tenor and Metal Ratios within and below the Merensky Reef, Bushveld Complex: Implications for Its Genesis,” J. Petrol. 50(4), 625–659 (2009).Google Scholar
  91. 91.
    D. R. Nelson, A. F. Trendall, and W. Altermann, “Chronological Correlations between the Pilbara and Kaapvaal Cratons,” Precambr. Res. 97, 165–189 (1999).Google Scholar
  92. 92.
    W. Nijman and S. T. De Vries, “Early Archaean Crustal Collapse Structures and Sedimentary Basin Dynamics,” in The Precambrian Research (Elsevier, Amsterdam, 1994), pp. 139–155.Google Scholar
  93. 93.
    T. Oberthür, D. W. Davis, T. G. Blenkinsop, and A. Höhndorf, “Precise U-Pb Mineral Ages, Rb-Sr and Sm-Nd Systematics for the Great Dyke, Zimbabwe—Constraints on Crustal Evolution and Metallogenesis of the Zimbabwe Craton,” Precambr. Res. 113, 293–306 (2002).Google Scholar
  94. 94.
    N. G. Phillips and J. D. M. Law, “Metamorphism of the Witwatersrand Gold Fields: a Review,” Ore Geol. Rev. 9, 1–31 (1994).Google Scholar
  95. 95.
    M. Poujol and C. R. Anhaeusser, “The Johannesburg Dome, South Africa: New Single Zircon U-Pb Isotopic Evidence for Early Archaean Granite-Greenstone Development within the Central Kaapvaal Craton,” Precambr. Res. 108, 139–157 (2001).Google Scholar
  96. 96.
    M. D. Prendergast and M. T. D. Wingate, “Zircon Geochronology and Partial Structural Re-Interpretation of the Late Archaean Mashaba Igneous Complex, South-Central Zimbabwe,” South African J. Geol. 110, 585–596 (2007).Google Scholar
  97. 97.
    O. T. Rämö and I. Haapala, “One Hundred Years of Rapakivi Granite,” Min. Petrol. 52, 129–185 (1995).Google Scholar
  98. 98.
    L. J. Robb and F. M. Meyer, “The Witwatersrand Basin, South Africa: Geological Framework and Mineralization Processes,” Ore Geol. Rev. 10, 67–94.Google Scholar
  99. 99.
    R. L. Rudnick and D. M. Fountain, “Nature and Composition of the Continental Crust: a Lower Crustal Perspective,” Rev. Geoph 33(3), 267–309 (1995).Google Scholar
  100. 100.
    M. D. Schmitz, S. A. Bowring, M. J. De Wit, and V. Gartz, “Subduction and Terrane Collision Stabilize the Western Kaapvaal Craton Tectosphere 2.9 Billion Years Ago,” Earth Planet. Sci. Lett. 222, 363–376 (2004).Google Scholar
  101. 101.
    M. R. Sharpe, “Noble Metals in the Marginal Rocks of the Bushveld Complex,” Econ. Geol. 77, 1286–1295 (1982).Google Scholar
  102. 102.
    M. R. Sharpe and L. J. Hulbert, “Ultramafic Sills Beneath the Eastern Bushveld Complex: Mobilized Suspensions of Early Lower Zone Cumulates in a Parental Magma with Boninitic Affinities,” Econ. Geol. 80, 849–871 (1985).Google Scholar
  103. 103.
    S. B. Shirey, S. H. Richardson, and J. W. Harris, “Age, Paragenesis and Composition of Diamonds and Evolution of the Precambrian Mantle Lithosphere of Southern Africa,” South African J. Geol. 107, 91–106 (2004A).Google Scholar
  104. 104.
    S. B. Shirey, S. H. Richardson, and J. W. Harris, “Integrated Models of Diamond Formation and Craton Evolution,” Lithos 77, 923–944 (2004).Google Scholar
  105. 105.
    N. S. C. Simon, G. R. Davies, D. G. Pearson, and R. W. Carlson, The Southern African Kaapvaal Craton: Formation and Modification of Continental Lithospheric Mantle in Archaean Subduction Zones? in Proceedings of Goldschmidt Conference (Copenhagen, 2004), pp. 5.3.56.Google Scholar
  106. 106.
    F. J. Simons, A. Zielhuis, and R. D. Van der Hilst, “The Deep Structure of the Australian Continent from Surface Wave Tomography,” Lithos 48(1/4), 17–43 (1999).Google Scholar
  107. 107.
    T. E. Smith, “Volcanic Rocks of Early Proterozoic Greenstone Belts,” in Proterozoic Crustal Evolution, Ed. by K.C. Condie (Elsevier, Amsterdam, 1992), pp. 7–54.Google Scholar
  108. 108.
    B. Stribrny, F. W. Wellmer, K. P. Burgath, et al., “Unconventional PGE Occurrences and PGE Mineralization in the Great Dyke: Metallogenic and Economic Aspects,” Mineral Deposita 35, 260–281 (2000).Google Scholar
  109. 109.
    P. C. Thurston and K. M. Chivers, “Secular Variation in Greenstone Sequence Development Emphasizing Superior Province, Canada,” Precambr., Res. 46, 21–58 (1990).Google Scholar
  110. 110.
    J. H. Tinker, M. J. De Wit, and H. Royden, “Old, Strong Continental Lithosphere with Weak Archaean Margin at ∼1.8 Ga, Kaapvaal Craton, South Africa,” South African J. Geol. 107, 255–260 (2004).Google Scholar
  111. 111.
    P. J. Treloar, M. P. Coward, and N. B. W. Harris, “Himalayan-Tibetan Analogies for the Evolution of the Zimbabwe Craton and Limpopo Belt,” Precambr. Res. 55, 571–587 (1992).Google Scholar
  112. 112.
    D. Twist and R. E. J. Harmer, “Geochemistry of Contrasting Siliceous Magmatic Suites in the Bushveld Complex: Genetic Aspects and Implications for Tectonic Discrimination Diagrams,” J. Volcanol. Geotherm. Res. 32, 83–98 (1987).Google Scholar
  113. 113.
    M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett, Earth’s Oldest Rocks, Ed. by K.C. Condie (Elsevier, Amsterdam, 2007).Google Scholar
  114. 114.
    G. von Gruenewaldt and R. E. Harmer, “Tectonic Setting of Proterozoic Layered Intrusions with Special Reference to the Bushveld Complex,” Proterozoic Crustal Evolution, Ed. by K.C. Condie (Elsevier, Amsterdam, 1992).Google Scholar
  115. 115.
    E. Walraven, R. A. Armstrong, and F. J. Kruger, “A Chronostratigraphic Framework for the North-Central Kaapvaal Craton, the Bushveld Complex and the Vredefort Structure,” Tectonophysics 171, 23–48 (1990).Google Scholar
  116. 116.
    E. Walraven and J. Pape, “Pb-Pb Whole-Rock Ages for the Pongola Supergroup and the Usushwana Complex, South Africa,” J. African Earth Sci. 18(4), 297–308 (1994).Google Scholar
  117. 117.
    Y. Watanabe, T. Otake, W. Altermann, and H. Ohmoto, “Detrital” Pyrite Pebbles from Witwatersrand, South Africa: Evidence for an Oxygenated Archean atmosphere? in Proceedings of Goldschmidt Conference (Copenhagen, 2004), pp. 6.5.P03.Google Scholar
  118. 118.
    A. H. Wilson and M. D. Prendergast, “Platinum-Group Element Mineralization in the Great Dyke, Zimbabwe, and Its Relationship to Magma Evolution and Magma Chamber Structure,” South African J. Geol. 104, 319–342 (2001).Google Scholar
  119. 119.
    J. F. Wilson, “A Craton and Its Cracks: Some of the Behaviour of the Zimbabwe Block the Late Archaean to the Mesozoic in Response to Horizontal Movements, and the Significance of Some of Its Mafic Dyke Fracture Patterns,” J. African Earth Sci. 10(3), 483–501 (1990).Google Scholar
  120. 120.
    B. F. Windley, “Proterozoic Anorogenic Magmatism and Its Orogenic Connections,” J. Geol. Soc. London 150, pp. 39–50, 1993.Google Scholar
  121. 121.
    B. F. Windley, The Evolving Continents, 3rd Edit. (Wiley, Chichester, 1999).Google Scholar
  122. 122.
    A. Zeh, A. Gerdes, and J. M. Barton, Jr., “Archean Accretion and Crustal Evolution of the Kalahari Craton—the Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc,” J. Petrol. 50(5), 933–966 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations