Geotectonics

, Volume 45, Issue 1, pp 51–70

Precambrian microcontinents of the Ural-Mongolian Belt: New paleomagnetic and geochronological data

Article

Abstract

The knowledge on the early stages of evolution of the Ural-Mongolian Belt (UMB) (Late Neoproterozoic-Cambrian) is a key for understanding of its evolution in the Paleozoic. Unfortunately, this stage remains poorly studied. The tectonic reconstructions of the UMB for this time primarily depend on the views on the kinematics and tectonic evolution of numerous sialic massifs with Precambrian basement in the structure of the Tien Shan, Kazakhstan, Altai, and Mongolia. At present, the concept of the origin of these massifs is largely based on the lithostratigraphic similarity of the Neoproterozoic and Lower Paleozoic sections of the Tarim, South China, and Siberian platforms with coeval sections of Precambrian massifs within the UMB. New paleomagnetic and geochronological data can serve as additional sources of information on the origin and paleotectonic position of the microcontinents. In this paper, we present new isotopic datings and a new paleomagnetic determination for the Neoproterozoic volcanic rocks of the Zabhan Formation from the Baydrag microcontinent in central Mongolia. It is established that 805−770 Ma ago (U-Pb LA-MC-ICP-MS age of zircon) the Baydrag microcontinent was situated at a latitude of 47 ± 14° in the Northern or Southern hemisphere. These data provide new insights into the possible origin of the Precambrian micro-continents in the UMB. Analysis of paleomagnetic data and comparison of the age of the basement beneath various plates allow us to state rather confidently that ∼800 Ma ago the micro-continents of the UMB belonged to one of the North Rodinian plates: Indian, Tarim, or South China; their Australian origin is less probable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Ankinovich, Lower Paleozoic of V-Bearing Basin of the North Tien Shan and the Western Mragin of Central Kazakhstan (Acad. Sci. KazSSR, Alma-Ata, 1961), Part 1 [in Russian].Google Scholar
  2. 2.
    V. G. Belichenko, E. F. Letnikova, and N. K. Geletii, “Geochemical Features of Carbonate Deposits in Covers of the Tuva-Mongolia Microcontinent,” Dokl. Akad. Nauk 364(1), 80–83 (1999) [Dokl. Earth Sci. 364 (1), 1–4 (1999)].Google Scholar
  3. 3.
    V. V. Burashnikov and S. V. Ruzhentsev, “The Sharyngol Upper Riphean-Vendian Rift-Related Complex,” Dokl. Akad. Nauk 332(1), 54–57 (1993).Google Scholar
  4. 4.
    V. S. Burtman, “Some Problems Concerning Paleozoic Tectonic Reconstructions in Central Asia, Geotektonika 33(4), 103–112 (1999).Google Scholar
  5. 5.
    S. V. Veshcheva, O. M. Turkina, E. F. Letnikova, and Yu. L. Ronkin, “Geochemical and Sm-Nd Isotopic Characteristics of the Neoproterozoic Terrigenous Rocks of the Tuva-Mongolian Massif,” Dokl. Akad. Nauk 418(1), 155–160 (2008) [Dokl. Earth Sci. 418 (1), 155–160 (2008)].Google Scholar
  6. 6.
    A. S. Gibsher, E. V. Khain, A. B. Kotov, et al., “The Late Vendian Age of the Hantayshir Ophiolite Complex of Western Mongolia,” Geol. Geofiz. 42(8), 1179–1185 (2001).Google Scholar
  7. 7.
    K. E. Degtyarev and A. V. Ryazantsev, “Cambrian Arc-Continent Collision in the Paleozoides of Kazakhstan,” Geotektonika, 41(1), 71–96 (2007) [Geotectonics 41 (1), 63–86 (2007)].Google Scholar
  8. 8.
    A. N. Didenko, A. A. Mossakovsky, D. M. Pechersky, et al., “Geodynamics of Paleozoic Oceans of Central Asia,” Geol. Geofiz. 35(7/8), 59–75 (1994).Google Scholar
  9. 9.
    N. V. Esakova and E. A. Zhegallo, Biostratigraphy and Fauna of the Lower Cambrian in Mongolia (Nauka, Moscow, 1996) [inRussian].Google Scholar
  10. 10.
    I. T. Zhuravleva, “Paleobiogeography of the Early Cambrian,” in Paleontology, Paleobiogeography, and Mobilistic Concept (Knizhn. Izd-vo, Magadan, 1981), pp. 43–51 [in Russian].Google Scholar
  11. 11.
    L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of the Lithospheric Plates of the Territory of the USSR (Nedra, Moscow, 1990), Vol. 1, [in Russian].Google Scholar
  12. 12.
    E. I. Zubtsov, Ulutau-Tien Shan Tillite Complex of the Late Precambrian (Moscow State Univ., Moscow, 1971) [inRussian].Google Scholar
  13. 13.
    A. L. Knipper, Tectonics of the Baikonur Synclinorium (Nauka, Moscow, 1963) [inRussian].Google Scholar
  14. 14.
    I. K. Kozakov, E. V. Bibikova, L. A. Neimark, and T. I. Kirnozova, “The Baydrag Block,” in Early Precambrian of the Central Asian Foldbelt (Dom Nauka, St. Petersburg, 1993), pp. 118–137 [in Russian].Google Scholar
  15. 15.
    V. G. Korolev and R. A. Maksumova, Precambrian Tillites and Tillitoids of the Tien Shan (Ilim, Frunze, 1984) [in Russian].Google Scholar
  16. 16.
    A. B. Kotov, I. K. Kozakov, E. V. Bibikova, E. B. Sal’nikova, E. I. Kirnozova, V. P. Kovach, “Duration of Episodes of Regional Metamorphism in Regions of Polycyclic Endogenic Processes: U-Pb Geochronological Study,” Petrologiya 3(6), 567–575 (1995).Google Scholar
  17. 17.
    A. B. Kuz’michev, Tectonic History of the Tuva-Mongolian Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages (PROBEL, Moscow, 2004) [in Russian].Google Scholar
  18. 18.
    D. V. Metelkin, I. V. Belonosov, D. P. Gladkochub, et al., “Paleomagnetic Directions in the Intrusions of the Nersa Complex of the Biryusa Sayan Region as a Reflection of Tectonic Events in the Neoproterozoic,” Geol. Geofiz. 46(4), 398–413 (2005).Google Scholar
  19. 19.
    A. A. Mossakovsky, S. V. Ruzhentsev, S. G. Samygin, and T. N. Kheraskova, “Central Asian Foldbelt: Geodynamic Evolution and Formation History,” Geotektonika 27(6), 3–32 (1993).Google Scholar
  20. 20.
    V. N. Puchkov, Paleogeodynamics of the Southern and Central Urals (Dauriya, Ufa, 2000) [inRussian].Google Scholar
  21. 21.
    L. N. Repina, “Paleobiogeography of the Early Cambrian Seas from Trilobites,” in Biostratigraphy and Biogeography of the Paleozoic of Siberia, Ed. by A.V. Kanygin and N.P. Meshkova (Inst. Geol. Geophys., Novosibirsk, 1985), pp. 5–15 [in Russian].Google Scholar
  22. 22.
    S. V. Ruzhentsev and V. V. Burashnikov, “Tectonics of Salairides of Western Mongolia,” Geotektonika 29(5), 25–40 (1995).Google Scholar
  23. 23.
    Yu. K. Sovetov, “Neoproterozoic Rifting and Evolution of Sedimentary Basins in Tarim-Type Microcontinents: The Lesser Karatau, Southern Kazakhstan,” in Types of Sedimentogenesis and Lithogenesis and Their Evolution in the Earth’s History (Inst. Geol. Geophys., Novosibirsk, 2008), Vol. II, pp. 287–289 [in Russian].Google Scholar
  24. 24.
    E. V. Khain, L. A. Neimark, and Yu. V. Amelin, “Caledonian Stage of Remobilization of Precambrian Basement of the Gargan Block, the Eastern Sayan: Isotopic-Geochemical Data,” Dokl. Akad. Nauk 342(6), 776–780 (1995).Google Scholar
  25. 25.
    T. N. Kheraskova, S. G. Samygin, S. V. Ruzhentsev, and A. A. Mossakovsky, “Late Riphean Marginal Continental Volcanic Belt of Eastern Gondwana,” Dokl. Akad. Nauk 342(5), 661–664 (1995).Google Scholar
  26. 26.
    V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, et al., “Geodynamics of Caledonides in the Central Asian Foldbelt,” Dokl. Akad. Nauk 389(3), 1–6 (2003) [Dokl. Earth Sci. 389A (3), 311–316 (2003)].Google Scholar
  27. 27.
    L. D. Ashwal, D. Demaiffe, and T. H. Torsvik, “Petrogenesis of Neoproterozoic Granitoids and Related Rocks from the Seychelles: Evidence for the Case of an Andean-Type Arc Origin,” J. Petrol. 43, 45–83 (2002).CrossRefGoogle Scholar
  28. 28.
    N. A. Berzin and N. L. Dobretsov, “Geodynamic Evolution of Southern Siberia in Late Precambrian-Early Paleozoic Time,” in Proceedings of the 29th Intern. Geol. Congress on Reconstruction of the Paleoasian Ocean (VSP, Utrecht, 1994), pp. 53–70.Google Scholar
  29. 29.
    Y. Chen, B. Xu, S. Zhan, and Y. G. Li, “First Mid-Neoproterozoic Paleomagnetic Results from the Tarim Basin (NW China) and Their Geodynamic Implications,” Precambr. Res 133, 271–281 (2004).CrossRefGoogle Scholar
  30. 30.
    J. P. Cogné, “PaleoMac: a Macintosh Application for Treating Paleomagnetic Data and Making Plate Reconstructions,” Geochem. Geophys. Geosyst. 4(1), 1007 (2003).CrossRefGoogle Scholar
  31. 31.
    D. A. Evans, A. Y. Zhuravlev, C. J. Budney, and J. L. Kirschvink, “Palaeomagnetism of the Bayan Gol Formation, Western Mongolia,” Geol. Mag. 133, 487–496 (1996).CrossRefGoogle Scholar
  32. 32.
    D. A. D. Evans, Z. X. Li, J. L. Kirschvink, and M. T. D. Wingate, “A High-Quality Mid-Proterozoic Paleomagnetic Pole from South China, with Implications for an Australia-Laurentia Connection at 755 Ma,” Precambr. Res. 100, 213–234 (2000).CrossRefGoogle Scholar
  33. 33.
    R. A. Fisher, “Dispersion on a Sphere,” Proc. Royal. Soc., Ser. A, 217, 295–305 (1953).CrossRefGoogle Scholar
  34. 34.
    R. B. Hargraves and R. A. Duncan, “Radiometric Age and Paleomagnetic Results from Seychelles Dikes,” Proceedings of the Ocean Drilling Program: Scientific Results 115, 119–122 (1990).Google Scholar
  35. 35.
    S. S. Harlan, J. W. Geissman, and L. W. Snee, “Paleomagnetic and 40Ar/39Ar Geochronologic Data from Late Proterozoic Mafic Dykes and Sills, Montana and Wyoming,” USGS Prof. Paper, No. 1580, 1–16 (1997).Google Scholar
  36. 36.
    L. M. Heaman, A. N. Le Cheminant, and R. H. Rainbird, “Nature and Timing of Franklin Igneous Events Canada: Implications for a Late Proterozoic Mantle Plume and the Break-Up of Laurentia,” Earth Planet. Sci. Lett. 109, 117–131 (1992).CrossRefGoogle Scholar
  37. 37.
    B. C. Huang, B. Xu, C. X. Zhang, et al., “Paleomagnetism of the Baiyisi Volcanic Rocks (Ca. 740 Ma) of Tarim Northwest China: a Continental Fragment of Neoproterozoic Western Australia?,” Precambr. Res. 142, 83–92 (2005).CrossRefGoogle Scholar
  38. 38.
    M. P. Iglesia-Llanos, J. A. Tait, V. Popov, and A. Ablamasova, “Paleomagnetic Data from Ediacaran (Vendian) Sediments of the Arkhangelsk Region, NW Russia: An Alternative APWP of Baltica for the Late Proterozoic-Early Paleozoic,” Earth Planet. Sci. Lett. 240, 732–747 (2005).CrossRefGoogle Scholar
  39. 39.
    A. V. Ilyin, “Proterozoic Supercontinent, Its Latest Precambrian Rifting, Break-Up, Dispersal Into Smaller Continents, and Subsidence of Their Margins: Evidence from Asia,” Geology 18, 1231–1234 (1990).CrossRefGoogle Scholar
  40. 40.
    E. V. Khain, E. V. Bibikova, E. B. Salnikova, et al., “The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions,” Precambr. Res. 122, 329–358 (2003).CrossRefGoogle Scholar
  41. 41.
    T. N. Kheraskova, A. N. Didenko, V. A. Bush, and Yu. A. Volozh, “The Vendian-Early Paleozoic History of the Continental Margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt,” Russ. J. Earth Sci 5(3), 165–184 (2003).CrossRefGoogle Scholar
  42. 42.
    V. V. Khomentovsky and A. S. Gibsher, “The Neoproterozoic-Lower Cambrian in Northern Gobi-Altay, Western Mongolia: Regional Setting, Lithostratigraphy, and Biostratigraphy,” Geol. Mag. 133(4), 371–390 (1996).CrossRefGoogle Scholar
  43. 43.
    J. L. Kirschvink, “The Precambrian Cambrian Boundary Problem: Magnetostratigraphy of the Amadeus Basin, Central Australia,” Geol. Mag. 115, 139–150 (1978).CrossRefGoogle Scholar
  44. 44.
    J. L. Kirschvink, “The Least-Square Line and Plane and the Analysis of Palaeomagnetic Data,” Geophys. J. Roy. Astron. Soc. 62, 699–718 (1980).Google Scholar
  45. 45.
    J. Kosler and P. J. Sylvester, “Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS, Zircon,” Rev. Mineral. Geochem. 53, 243–271 (2003).CrossRefGoogle Scholar
  46. 46.
    V. A. Kravchinsky, K. M. Konstantinov, and J.-P. Cogne, “Paleomagnetic Study of Vendian and Early Cambrian Rocks of South Siberia and Central Mongolia: Was the Siberian Platform Assembled at this Time?,” Precambr. Res. 110, 61–92 (2001).CrossRefGoogle Scholar
  47. 47.
    A. Kröner, B. F. Windley, G. Badarh, et al., “Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield,” Geol. Soc. Amer. Mem. 200, 181–209 (2007).CrossRefGoogle Scholar
  48. 48.
    N. M. Levashova, J. G. Meert, A. S. Gibsher, and M. L. Bazhenov, “The Origin of the Central Asian Orogenic Belt Microcontinents: Constraints from Paleomagnetism and Geochronology,” Precambr. Res. 2010 (in press).Google Scholar
  49. 49.
    Z. X. Li, “New Palaeomagnetic Results from the “Cap Dolomite” of the Neoproterozoic Walsh Tillite, Northwestern Australia,” Precambr. Res. 100, 359–370 (2000).CrossRefGoogle Scholar
  50. 50.
    Z. X. Li, X. H. Li, P. D. Kinny, et al., “Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton South China and Correlations with Other Continents: Evidence for a Mantle Superplume That Broke Up Rodinia,” Precambr. Res. 122, 85–109 (2003).CrossRefGoogle Scholar
  51. 51.
    Z. X. Li, D. A. D. Evans, and S. Zhang, “A 90° Spin on Rodinia: Possible Causal Links between the Neoproterozoic Supercontinent, Superplume, True Polar Wander and Low-Latitude Glaciation,” Earth Planet. Sci. Lett. 220, 409–421 (2004).CrossRefGoogle Scholar
  52. 52.
    Z. X. Li, S. V. Bogdanova, A. Davidson, et al., “Assembly, Configuration, and Break-Up History of Rodinia: a Synthesis,” Precambr. Res. 160, 179–210 (2008).CrossRefGoogle Scholar
  53. 53.
    J. L. Lin, M. D. Fuller, and W. Y. Zhang, “Paleogeography of the North and South China Blocks During the Cambrian,” J. Geodyn. 2, 91–114 (1985).CrossRefGoogle Scholar
  54. 54.
    S. Lu, H. Li, C. Zhang, and G. Niu, “Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments,” Precambr. Res. 160, 94–107 (2008a).CrossRefGoogle Scholar
  55. 55.
    S. Lu, G. Zhao, H. Wang, and G. Hao, “Precambrian Basement and Sedimentary Cover of the North China Craton: a Review,” Precambr. Res. 160, 77–93 (2008b).CrossRefGoogle Scholar
  56. 56.
    K. R. Ludwig, User’s Manual for ISOPLOT, a Geochemical Toolkit for Microsoft Excel Version 3.09.Google Scholar
  57. 57.
    K. V. Mardia, Statistics of Directional Data (Academic Press, London, 1972).Google Scholar
  58. 58.
    M. W. McElhinny, “Statistical Significance of the Fold Test in Palaeomagnetism,” Geoph. J. Roy. Astron. Soc. 8, 338–340 (1964).Google Scholar
  59. 59.
    P. L. McFadden and M. W. McElhinny, “The Combined Analysis of Remagnetization Circles and Direct Observations in Palaeomagnetism,” Earth Planet. Sci. Lett. 87, 161–172 (1988).CrossRefGoogle Scholar
  60. 60.
    M. O. McWilliams and M. W. McElhinny, “Late Precambrian Paleomagnetism in Australia: the Adelaide Geosyncline,” J. Geol. 88, 1–26 (1980).CrossRefGoogle Scholar
  61. 61.
    J. G. Meert, R. Van der Voo, and T. Payne, “Paleomagnetism of the Catoctin Volcanic Province: a New Vendian-Cambrian Apparent Polar Wander Path for North America,” J. Geophys. Res. 99(B3), 4625–4641 (1994).CrossRefGoogle Scholar
  62. 62.
    J. G. Meert and T. H. Torsvik, “The Making and Unmaking of a Supercontinent: Rodinia Revisited,” Tectonophysics 375, 261–288 (2003).CrossRefGoogle Scholar
  63. 63.
    G. Murthy, C. Gower, M. Tubrett, and R. Patzold, “Paleomagnetism of Eocambrian Long Range Dykes and Double Mer Formation from Labrador, Canada,” Can. J. Earth Sci. 29, 1224–1234 (1992).Google Scholar
  64. 64.
    J. B. Paces and J. D. Miller, Jr., “Precise U-Pb Ages of Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota: Geochronological Insights to Physical, Petrogenetic, Paleomagnetic, and Tectonomagmatic Processes Associated with the 1.1 Ga Midcontinent Rift System,” J. Geophys. Res. 98, 997–14013 (1993).CrossRefGoogle Scholar
  65. 65.
    H. C. Palmer, W. R. A. Baragar, M. Fortier, and J. H. Foster, “Paleomagnetism of Late Proterozoic Rocks, Victoria Island, Northwest Territories, Canada,” Can. J. Earth Sci. 20, 1456–1469 (1983).Google Scholar
  66. 66.
    J. K. Park, D. K. Norris, and A. Larochelle, “Paleomagnetism and the Origin of the Mackenzie Arc of Northwestern Canada,” Can. J. Earth Sci. 26, 2194–2203 (1989).Google Scholar
  67. 67.
    J. K. Park, “Palaeomagnetic Constraints on the Position of Laurentia from Middle Neoproterozoic to Early Cambrian Times,” Precambr. Res. 69, 95–112 (1994).CrossRefGoogle Scholar
  68. 68.
    V. E. Pavlov, V. A. Kravchinsky, A. V. Shatsillo, and R. Yu. Petrov, Paleomagnetism of the Upper Riphean Rocks of Turukhansk, Olenek and Uda Sis-Sayan Regions: implications to Neoproterozois drift of the Siberian platform (in preparation).Google Scholar
  69. 69.
    S. A. Pisarevsky, Z. X. Li, K. Grey, and M. K. Stevens, “A Palaeomagnetic Study of Empress 1A, a Stratigraphic Drillhole in the Officer Basin: Evidence for a Low-Latitude Position of Australia in Neoproterozoic,” Precambr. Res. 110, 93–108 (2001).CrossRefGoogle Scholar
  70. 70.
    S. A. Pisarevsky, M. T. D. Wingate, M. K. Stevens, and P. W. Haines, “Paleomagnetic Results from the Lancer-1 Stratigraphic Drill Hole, Officer Basin, Western Australia, and Implications for Rodinia Reconstructions,” Austr. J. Earth Sci. 54, 561–572 (2007).CrossRefGoogle Scholar
  71. 71.
    V. Popov, A. Iosifidi, A. Khramov, et al., “Paleomagnetism of Upper Vendian Sediments from the Winter Coast, White Sea Region, Russia: Implications for the Paleogeography of Baltica During Neoproterozoic Times,” J. Geophys. Res. 107, 2315 (2002).CrossRefGoogle Scholar
  72. 72.
    V. Popov, A. Khramov, and V. Bachtadze, “Paleomagnetism, Magnetic Stratigraphy and Petromagnetism of the Upper Vendian Sedimentary Rocks in the Sections of the Zolotitsa River and in the Verkhotina Hole, Winter Coast of the White Sea, Russia,” Russian J. Earth Sci. 7, 1–29 (2005).Google Scholar
  73. 73.
    T. Radhakrishna and M. Joseph, “Late Precambrian (850−800 Ma) Paleomagnetic Pole for the South Indian Shield from the Harohalli Alkaline Dykes; Geotectonic Implications for Gondwana Reconstructions,” Precambr. Res. 80, 77–87 (1996).CrossRefGoogle Scholar
  74. 74.
    Z. Q. Rui and J. D. A. Piper, “Paleomagnetic Study of Neoproterozoic Glacial Rocks of the Yangzi Block; Paleolatitudes and Configuration of South China in the Late Proterozoic Supercontinent,” Precambr. Res. 85, 173–199 (1997).CrossRefGoogle Scholar
  75. 75.
    A. M. C. Şengör, B. A. Natal’in, “Paleotectonics of Asia: Fragments of a Synthesis,” in The Tectonic Evolution of Asia (Cambridge Univ.Press, Cambridge, 1996), pp. 486–640.Google Scholar
  76. 76.
    A. V. Shatsillo, A. N. Didenko, and V. E. Pavlov, “Paleomagnetism of Vendian Deposits of the Southwestern Siberian Platform,” Russian J. Earth Sci. 8, ES2003 (2006).Google Scholar
  77. 77.
    A. Simonetti, L. M. Heaman, R. P. Hartlaub, R. A. Creaser, T. G. MacHattie, and C. Bohm, “U-Pb Zircon Dating by Laser Ablation-MC-ICP-MS Using a New Multiple Ion Counting Faraday Collector Array,” J. Analyt. Atom. Spectr. 20, 677–686 (2005).CrossRefGoogle Scholar
  78. 78.
    L. E. Sohl, N. Christie-Blick, and D. V. Kent, “Paleomagnetic Polarity Reversals in Marinoan (Ca 600 Ma) Glacial Deposits of Australia: Implications for the Duration of Low-Latitude Glaciation in Neoproterozoic Time,” Geology 111, 1120–1139 (1999).Google Scholar
  79. 79.
    G. M. Stampfli and G. D. Borel, “A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrones,” Earth Planet. Sci. Lett. 196, 17–33 (2002).CrossRefGoogle Scholar
  80. 80.
    D. T. A. Symons and A. D. Chiasson, “Paleomagnetism of the Callander Complex and the Cambrian Apparent Polar Wander Path for North America,” Can. J. Earth Sci. 28, 355–363 (1991).CrossRefGoogle Scholar
  81. 81.
    E. I. Tanczyk, P. Lapointe, W. A. Morris, and P. W. Schmidt, “A Paleomagnetic Study of the Layered Mafic Intrusions at Sept-Iles, Quebec,” Can. J. Earth Sci. 24, 1431–1438 (1987).CrossRefGoogle Scholar
  82. 82.
    T. H. Torsvik, L. M. Carter, L. D. Ashwal, et al., “Rodinia Refined or Obscured: Palaeomagnetism of the Malani Igneous Suite (NW India),” Precambr. Res. 108, 319–333 (2001a).CrossRefGoogle Scholar
  83. 83.
    T. H. Torsvik, L. D. Ashwal, R. D. Tucker, and E. A. Eide, “Neoproterozoic Geochronology and Palaeogeography of the Seychelles Microcontinent: the India Link,” Precambr. Res. 110, 47–59 (2001b).CrossRefGoogle Scholar
  84. 84.
    J. J. Veevers, “Gondwanaland from 650−500 Ma Assembly Through 320 Ma Merger in Pangea to 185−100 Ma Breakup: Supercontinental Tectonics via Stratigraphy and Radiometric Dating,” Earth-Sci. Rev. 68, 1–132 (2004).CrossRefGoogle Scholar
  85. 85.
    H. J. Walderhaug, T. H. Torsvik, E. A. Eide, et al., “Geochronology and Paleomagnetism of the Hunnedalen Dykes, SW Norway: Implications for the Sveconorwegian Apparent Polar Wander Loop,” Earth Planet. Sci. Lett. 169, 71–83 (1999).CrossRefGoogle Scholar
  86. 86.
    H. J. Walderhaug, T. H. Torsvik, and E. Halvorsen, “Geomagnetism, Rock Magnetism and Palaeomagnetism. The Egersund Dykes (SW Norway): a Robust Early Ediacaran (Vendian) Palaeomagnetic Pole from Baltica,” Geophys. J. Int. 168, 935–948 (2007).CrossRefGoogle Scholar
  87. 87.
    M. R. Walter, J. J. Veevers, C. R. Calver, et al., “Dating the 840−544 Ma Neoproterozoic Interval by Isotopes of Strontium, Carbon and Sulfur in Seawater, and Some Interpretative Models,” Precambr. Res. 100, 371–432 (2000).CrossRefGoogle Scholar
  88. 88.
    A. B. Weil, J. W. Geissman, and R. Van der Voo, “Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: Implications for Laurentia’s Neoproterozoic APWP and Rodinia Break-Up,” Precambr. Res. 129, 71–92 (2004).CrossRefGoogle Scholar
  89. 89.
    I. S. Williams, “U-Th-Pb Geochronology by Ion Microprobe,” Rev. Econ. Geol. 7, 1–35 (1998).Google Scholar
  90. 90.
    M. T. D. Wingate and J. W. Giddings, “Age and Paleomagnetism of the Mundine Well Dyke Swarm, Western Australia: Implications for an Australia-Laurentia Connection at 750 Ma,” Precambr. Res. 100, 335–357 (2000).CrossRefGoogle Scholar
  91. 91.
    A. Yakubchuk, A. Cole, R. Seltmann, and V. V. Shatov, “Tectonic Setting, Characteristics, and Regional Exploration Criteria for Gold Mineralization in the Altaid Tectonic Collage: the Tien Shan Province as a Key Example,” Soc. Econ. Geol. Spec. Publ. 9, 177–201 (2002).Google Scholar
  92. 92.
    A. Yakubchuk, “Re-Deciphering the Tectonic Jigsaw Puzzle of Northern Eurasia,” J. Asian Earth Sci. 32, 82–101 (2008).CrossRefGoogle Scholar
  93. 93.
    S. Zhang, Z. X. Li, and H. Wu, “New Precambrian Palaeomagnetic Constraints on the Position of the North China Block in Rodinia,” Precambr. Res. 144, 213–238 (2006).CrossRefGoogle Scholar
  94. 94.
    J. D. A. Zijderveld, “AC Demagnetization of Rocks: Analysis of Results,” in Methods in Paleomagnetism (Elsevier, Amsterdam, 1967), pp. 254–286.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. M. Levashova
    • 1
  • A. S. Gibsher
    • 2
  • J. G. Meert
    • 3
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Department of Geological SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations