, Volume 44, Issue 6, pp 541–558 | Cite as

Impact of surface processes on the growth of orogenic wedges: Insights from analog models and case studies

  • J. MalavieilleEmail author
  • E. Konstantinovskaya


Interaction between surface processes and deep tectonic processes plays a key role in the structural evolution, kinematics and exhumation of rocks in orogenic wedges. The deformation patterns observed in analogue models applied to natural cases of present active or ancient mountain belts reflect several first order processes that result of these interactions. Internal strain partitioning due to mechanical behaviour of a thrust wedge has a strong impact on the vertical component of displacement of tectonic units that in return favour erosion in domains of important uplift. Such strain partitioning is first controlled by tectonic processes, but surface processes exert a strong feed back on wedge dynamics. Indeed, material transfer in thrust wedges not only depends on its internal dynamics, it is also influenced by climate controlled surface processes involving erosion and sedimentation. Effects of erosion are multiple: they allow long term localization of deformed domains, they favour important exhumation above areas of deep underplating and combined with sedimentation in the foreland they contribute to maintain the wedge in a critical state for long time periods. The simple models illustrate well how mountain belts structure, kinematics of tectonic units and exhumation are determined by these complex interactions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. A. M. Aerden, “Tectonic Evolution of the Montagne Noire and a Possible Orogenic Model for Syn-Collisional Exhumation of Deep Rocks, Hercynian Belt,” France Tectonics 17, 62–79 (1988).CrossRefGoogle Scholar
  2. 2.
    D. Aerden and J. Malavieille, “Origin of a Large-Scale Fold Nappe in the Montagne Noire, Variscan belt, France,” J. Struct. Geol. 21, 1321–1333 (1999).CrossRefGoogle Scholar
  3. 3.
    J. Angelier, H.-T. Chu, J.-C. Lee, and J.-C. Hu, “Active Faulting and Earthquake Risk: the Chihshang Fault Case,” Taiwan. J. Geodyn. 29, 151–185 (2000).CrossRefGoogle Scholar
  4. 4.
    F. Arthaud, “Etude Tectonique et Microtectonique Comparée de Deux Domaines Hercyniens: les Nappes de la Montage Noire (France) et l’Anticlinorium de l’Iglesiente (Sardaigne), Publications de l’Université des Sciences et Techniques du Languedoc, Montpellier, Serie Géologie Structurale 1, 175 (1970).Google Scholar
  5. 5.
    J.-P. Avouac, “Mountain Building, Erosion, and the Seismic Cycle in the Nepal Himalaya,” Advances Geophys. 46, 1–80 (2003).CrossRefGoogle Scholar
  6. 6.
    J. P. Avouac and E. G. Burov, “Erosion as a Driving Mechanism of Intracontinental Growth,” J. Geophys. Res. 101(8), 17747–17769 (1996).CrossRefGoogle Scholar
  7. 7.
    C. J. Banks and J. Warburton, “Mid-Crustal Detachment in the Betic System of Southeast Spain,” Tectonophysics 191, 275–289 (1991).CrossRefGoogle Scholar
  8. 8.
    C. Beaumont, P. Fullsack, and J. Hamilton, “Erosional Control of Active Compressional Orogens,” in Thrust Tectonics, Ed. by K. R. McClay (Chapman and Hall, London, 1992), pp. 1–18.Google Scholar
  9. 9.
    C. Beaumont, P. Fullsack, and J. Hamilton, “Styles of Crustal Deformation in Compressional Orogens Caused by Subduction of the Underlying Lithosphere,” Tectonophysics 232, 119–132 (1994).CrossRefGoogle Scholar
  10. 10.
    C. Beaumont, J. A. Munoz, J. Hamilton, and P. Fullsack, “Factors Controlling the Alpine Evolution of the Central Pyrenees Inferred from a Comparison of Observations and Geodynamical Models,” J. Geophys. Res. 105, 8121–8145 (2000).CrossRefGoogle Scholar
  11. 11.
    O. Beyssac, M. Simoes, J. P. Avouac, K. A. Farley, Y. G. Chen, Y. C. Chan, and B. Goffé, “Late Cenozoic Metamorphic Evolution and Exhumation of Taiwan,” Tectonics 26, TC6001, (2007) doi: 10.1029/2006TC002064.CrossRefGoogle Scholar
  12. 12.
    L. Bollinger, J. P. Avouac, O. Beyssac, E. J. Catlos, T. M. Harrison, M. Grove, B. Goffé, and S. Sapkota, “Thermal Structure and Exhumation History of the Lesser Himalaya in Central Nepal,” Tectonics 23, TC5015 (2004), doi: 10.1029/2003TC001564.CrossRefGoogle Scholar
  13. 13.
    C. Bonnet, Interactions between Tectonics and Surface Processes in the Alpine Foreland: Insights from Analogue Model and Analysis of Recent Faulting (Geofocus, Universite de Fribourg (Suisse), Fribourg, 2007), vol. 17, No. 1551, p. 196.Google Scholar
  14. 14.
    C. Bonnet, J. Malavieille, and J. Mosar, “Interactions between Tectonics, Erosion, and Sedimentation during the Recent Evolution of the Alpine Orogen: Analogue Modeling Insights,” Tectonics 26, TC6016 (2007), doi: 10.1029/2006TC002048.CrossRefGoogle Scholar
  15. 15.
    C. Bonnet, J. Malavieille, and J. Mosar, “Surface Processes Versus Kinematics of Thrust Belts: Impact on Rates of Erosion, Sedimentation, and Exhumation-Insights from Analogue Models,” Bull. Soc. Geol. France 179(3), 179–192 (2008).Google Scholar
  16. 16.
    J. P. Brun, “Deformation of the Continental Lithosphere: Insights from Brittle-Ductile Modes,” Geol. Soc. Spec. Publ. 200, 355–370 (2002).CrossRefGoogle Scholar
  17. 17.
    D. W. Burbank, “Rates of Erosion and Their Implications for Exhumation,” Mineral. Mag. 66, 25–52 (2002).CrossRefGoogle Scholar
  18. 18.
    M. Burkhard and A. Sommaruga, “Evolution of the Western Swiss Molasse Basin: Structural Relations with the Alps and the Jura Belt,” Geol. Soc. Spec. Publ. 134, 279–298 (1998).CrossRefGoogle Scholar
  19. 19.
    N. Carry, F. Gueydan, J. P. Brun, and D. Marquer, “Mechanical Decoupling of High-Pressure Crustal Units During Continental Subduction,” Earth Planet. Sci. Lett. 278(1–2), 13–25 (2009), doi: 10.1016/j.epsl.2008.11.019.CrossRefGoogle Scholar
  20. 20.
    W. M. Chappie, “Mechanics of Thin-Skinned Fold-and-Thrust Belts,” Geol. Soc. Am. Bull. 89, 1189–1198 (1978).CrossRefGoogle Scholar
  21. 21.
    P. R. Cobbold, S. Durand, and R. Mourgues, “Sandbox Modelling of Thrust Wedges with Fluid-Assisted Detachments,” Tectonophysics 334, 245–258 (2001).CrossRefGoogle Scholar
  22. 22.
    D. S. Cowan and R. M. Silling, “A Dynamic, Scaled Model of Accretion at Trenches and Its Implications for the Tectonic Evolution of Subduction Complexes,” J. Geophys. Res. 83(B11), 5389–5396 (1978).CrossRefGoogle Scholar
  23. 23.
    J. M. Crespi, Y.-C. Chan, and M. S. Swaim, “Synorogenic Extension and Exhumation of the Taiwan Hinterland,” Geology 24, 247–250 (1996).CrossRefGoogle Scholar
  24. 24.
    L. Cruz, C. Teyssier, L. Perg, A. Take, and A. Fayon, “Deformation, Exhumation, and Topography of Experimental Doubly-Vergent Orogenic Wedges Subjected to Asymmetric Erosion,” J. Structural Geol. 30, 98–115 (2008).CrossRefGoogle Scholar
  25. 25.
    F. A. Dahlen, “Non Cohesive Critical Coulomb Wedges: An Exact Solution,” J. Geophys. Res. 89(B12), 10125–10133 (1984).CrossRefGoogle Scholar
  26. 26.
    F. A. Dahlen, “Mechanical Energy Budget of a Fold-and-Thrust Belt,” Nature 331, 335–337 (1988).CrossRefGoogle Scholar
  27. 27.
    F. A. Dahlen, “Critical Taper Model of Fold-and-Thrust Belts and Accretionary Wedges,” Ann. Rev. Earth Planetary Sci. 18, 55–99 (1990).CrossRefGoogle Scholar
  28. 28.
    F. A. Dahlen and T. D. Barr, “Brittle Frictional Mountain Building, 1: Deformation and Mechanical Energy Budget,” J. Geophys. Res. 94, 3906–3922 (1989).CrossRefGoogle Scholar
  29. 29.
    F. A. Dahlen and J. Suppe, “Mechanics, Growth, and Erosion of Mountain Belts,” Geol. Soc. Am., Special Paper 218, 161–178 (1988).Google Scholar
  30. 30.
    F. A. Dahlen, J. Suppe, and D. Davis, “Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory,” J. Geophys. Res. 89(B12), 10087–10101(1984).CrossRefGoogle Scholar
  31. 31.
    D. Davis, J. Suppe, and F. A. Dahlen, “Mechanics of Fold-and-Thrust Belts and Accretionary Wedges,” J. Geophys. Res. 88(B12), 1153–1172 (1983).CrossRefGoogle Scholar
  32. 32.
    P. Davy and P. R. Cobbold, “Experiments on Shortening of a 4-Layer Model of the Continental Lithosphere,” Tectonophysics 188, 1–25 (1991).CrossRefGoogle Scholar
  33. 33.
    J. Dewey and J. Bird, “Mountain Belts and the New Global Tectonics,” J. Geophys. Res. 75, 2625–2647 (1970).CrossRefGoogle Scholar
  34. 34.
    H. Echtler and J. Malavieille, “Extensional Tectonics, Basement Uplift and Stephano Permian Collapse Basin in a Late Variscan Metamorphic Core Complex (Montagne Noire, Southern Massif Central),” Tectonophysics 177, 125–138 (1990).CrossRefGoogle Scholar
  35. 35.
    S. Ellis and C. Beaumont, “Models of Convergent Boundary Tectonics: Implications for the Interpretation of Lithoprobe Data,” Can. J. Earth Sci. 36, 1711–1745 (1999).CrossRefGoogle Scholar
  36. 36.
    P. C. England and P. Molnar, “Surface Uplift, Uplift of Rocks and Exhumation of Rock,” Geology 18(12), 1173–1177 (1990).CrossRefGoogle Scholar
  37. 37.
    A. Escher, J. Hunziker, M. Marthaler, H. Masson, M. Sartori, and A. Steck, “Geologic Framework and Structural Evolution of the Western Swisss-Italian Alps,” in Deep Structure of the Swiss Alps-Results of the National Research Program 20 (NRP 20), Ed. by O. A. Pfiffher, P. Lehner, P. Heitzmann, S. Mueller, and A. Steck (Birkhauser, Basel, 1997), pp. 205–222.Google Scholar
  38. 38.
    M. Faure and N. Cottereau, “Kinematic Data on the Emplacement of the Middle Carboniferous Migmatitic Dome in the Axial Zone of the Montagne Noire, Massif Central, France,” Comptes Rendus, Academie des Sciences, Ser. II 307(16), 1787–1794 (1988).Google Scholar
  39. 39.
    D. A. Foster and B. E. John, “Quantifying Tectonic Exhumation in an Extensional Orogen with Thermochronology: Examples from the Southern Basin and Range Province,” Geol. Soc. London Sp. Publ. 154, 343–364 (1999).CrossRefGoogle Scholar
  40. 40.
    M. A. Goncharov, “Applicability of Similarity Conditions to Analoque Modeling of Tectonic Structures,” Geodynamics Tectonophys. 1(2), 148–168 (2010).Google Scholar
  41. 41.
    F. Graveleau, Interactions Tectonique, Erosion, Sédimentation Dans les Avant-pays de Chanes: Modélisation Analogique et étude des Piémonts de l’est du Tian Shan (Asie centrale), Thesis, UniversitéMontpellier II, Sciences et Techniques du Languedoc, 2008, p. 487.Google Scholar
  42. 42.
    M. Gutscher, N. Kukowski, J. Malavieille, and S. Lallemand, “Cyclical Behavior of Thrust Wedges: Insights from High Basal Friction Sandbox Experiments,” Geology 24, 135–138 (1996).CrossRefGoogle Scholar
  43. 43.
    M. A. Gutscher, N. Kukowski, J. Malavieille, and S. Lallemand, “Episodic Imbricate Thrusting and Underthrusting: Analog Experiments and Mechanical Analysis Applied to the Alaskan Accretionary Wedge,” J. Geophys. Res. 103, 10161–10176 (1998).CrossRefGoogle Scholar
  44. 44.
    G. E. Hilley and M. R. Strecker, “Steady State Erosion of Critical Coulomb Wedges with Applications to Taiwan and the Himalaya,” J. Geophys. Res. 109, B01411 (2004), doi: 10.1029/2002JB002284.CrossRefGoogle Scholar
  45. 45.
    B. K. Horton, “Erosional Control on the Geometry and Kinematics of Thrust Belt Development in the Central Andes,” Tectonics 18, 1292–1304 (1999).CrossRefGoogle Scholar
  46. 46.
    S. Hoth, J. Adam, N. Kukowski, and O. Oncken, “Influence of Erosion on the Kinematics of Bivergent Orogens, Results from Scaled Sandbox-Simulations,” Geol. Soc. Am. Sp. Pap. 398, 201–225(2004).Google Scholar
  47. 47.
    R. A. Jamieson and C. Beaumont, “Deformation and Metamorphism in Convergent Orogens: a Model for Uplift and Exhumation of Metamorphic Terranes,” Geol. Soc. Spec. Publ. 43, 17–129 (1989).CrossRefGoogle Scholar
  48. 48.
    M. Jolivet and J. Malavieille, Role de l’héritage sédimentaire sur la cinématique des systémes chevauchants: Modélisation analogique et application a l’avant-pays Andin, Scientific report, EP/T/EXP/GDP, No. 97-30rs, ELF Aquitaine Exploration Production, France, 1997, p. 85.Google Scholar
  49. 49.
    R. R. Jonesa, R. E. Holdsworth, J. Kenneth, W. McCaffrey, P. Clegg, and E. Tavarnelli, “Scale Dependence, Strain Compatibility and Heterogeneity of Three-Dimensional Deformation During Mountain Building: a Discussion,” J. Struct. Geol. 27, 1190–1204 (2005).CrossRefGoogle Scholar
  50. 50.
    E. Konstantinovskaya and J. Malavieille, “Erosion and Exhumation in Accretionary Orogens: Experimental and Geological Approaches,” Geochemistry, Geophysics Geosystems 6, Q02006 (2005), doi: 10.1029/2004GC000794.CrossRefGoogle Scholar
  51. 51.
    E. A. Konstantinovskaya and J. Malavieille, “Accretionary Orogens: Erosion and Exhumation,” Geotectonics 39(1), 69–86 (2005).Google Scholar
  52. 52.
    J. Kuhlemann, W. Frisch, B. Székely, and I. Dunkl, “Post-Collisional Sediment Budget History of the Alps: Tectonic Versus Climatic Control,” in t. J. Earth Sci. 91, 818–837 (2002).Google Scholar
  53. 53.
    A. Kühni and O. A. Pfiffner, “Drainage Patterns and Tectonic Forcing: A Model Study for the Swiss Alps,” Basin Res. 13, 169–197 (2001).CrossRefGoogle Scholar
  54. 54.
    N. Kukowski, S. Lallemand, J. Malavieille, M.-A. Gutscher, and T. J. Reston, “Mechanical Decoupling and Basal Duplex Formation Observed in Sandbox Experiments with Application to the Mediterranean Ridge Accretionary Complex,” Marine Geol. 186, 29–42 (2002).CrossRefGoogle Scholar
  55. 55.
    Y. Lagabrielle and A. Chauvet, “The Role of Extensional Tectonics in Shaping Cenozoic New-Caledonia,” Bull. Soc. Geol. France 179, 315–329 (2008).CrossRefGoogle Scholar
  56. 56.
    S. Lallemand and J. Malavieille, “Coulomb Theory Applied to Accretionary and Non-Accretionary Wedges,” Eos, Trans., AGU 73(14), 7–23 (1992).Google Scholar
  57. 57.
    S. E. Lallemand, P. Schnurle, and J. Malavieille, “Coulomb Theory Applied to Accretionary and Non-Accretionary Wedges-Possible Causes for Tectonic Erosion and/or Frontal Accretion,” J. Geophys. Res. 99(B6), 12033–12055 (1994).CrossRefGoogle Scholar
  58. 58.
    C. Larroque, S. Calassou, J. Malavieille, and F. Chanier, “Experimental Modeling of Forearc Basin Development During Accretionary Wedge Growth,” Basin Res. 7, 255–268 (1995).CrossRefGoogle Scholar
  59. 59.
    P. Leturmy, J. L. Mugnier, P. Vinour, P. Baby, B. Colletta, and E. Chabron, “Piggyback Basin Development Above a Thin-Skinned Thrust Belt with Two Detachment Levels as a Function of Interactions between Tectonic and Superficial Mass Transfer: the Case of the Subandean Zone (Bolivia),” Tectonophysics 320, 45–67 (2000).CrossRefGoogle Scholar
  60. 60.
    L. I. Lobkovsky, Geodynamics of Spreading and Subduction Zones and Two-Level Plate Tectonics (Nauka, Moscow, 1988), p. 253 [in Russian].Google Scholar
  61. 61.
    J. Lohrmann, N. Kukowski, J. Adam, and O. Oncken, “The Impact of Analogue Material Properties on the Geometry, Kinematics, and Dynamics of Convergent Sand Wedges,” J. Struct. Geol. 25(10), 1691–1711 (2003).CrossRefGoogle Scholar
  62. 62.
    J. Malavieille, “Modélisation Expérimental des Chevauchements Imbriqués: Application aux Chanes de Montagnes,” Bull. Soc. Geol. France 26, 129–138 (1984).Google Scholar
  63. 63.
    J. Malavieille, “Impact of Erosion, Sedimentation and Structural Heritage on the Structure and Kinematics of Orogenic Wedges: Analog Models and Case Studies,” Geol. Soc. Am. 20(1), 4–10 (2010), doi: 10.1130/GSATG48A.1.Google Scholar
  64. 64.
    J. Malavieille, and A. Chemenda, “Impact of Initial Geodynamic Settings on the Structure, Ophiolite Emplacement and Tectonic Evolution of Collisional Belts,” Ofioliti 22(1), 3–13 (1997).Google Scholar
  65. 65.
    J. Malavieille, S. Calassou, and C. Larroque, “Modelisation Experimentale des Relations Tectonique Sedimentation Entre Bassin Avant-arc et Prisme D’Accretion,” C. R., Acad., Sci. Paris 316, 1131–1137 (1993).Google Scholar
  66. 66.
    J. Malavieille, S. E. Lallemand, S. Dominguez, A. Deschamps, C.-Y. Lu, C.-S. Liu, P. Schnürle, and the ACT Scientific Crew, Arc-Continent Collision in Taiwan: New Marine Observations and Tectonic Evolution,“ Geol. Soc. Am. Spec. Pap. 358, 187–211 (2002).Google Scholar
  67. 67.
    J. G. Masek and C. C. Duncan, “Minimum-Work Mountain Building,” J. Geophys. Res. 103(B1), 907–917 (1998).CrossRefGoogle Scholar
  68. 68.
    M. Mattauer, “Intracrustal Subduction, Crust-Mantle décollement and Crustal-Stacking Wedge in the Himalayas and Other Collision Belts,” Geol. Soc. London, Collision Tectonics 19, 37–50 (1986).Google Scholar
  69. 69.
    P. Matte, “Variscan Thrust Nappes, Detachments, and Strike-Slip Faults in the French Massif Central: Interpretation of the Lineations,” in Memoir 200: 4-D Framework of Continental Crust., 2007, Vol. 200, pp. 391–402.CrossRefGoogle Scholar
  70. 70.
    A. Michard, B. Goffé, O. Saddiqi, R. Oberhansli, and A. S. Wendt, “Late Cretaceous Exhumation of the Oman Blueschists and Eclogites: a Two-Stage Extensional Mechanism,” Terra Nova 6, 404–413 (1994).CrossRefGoogle Scholar
  71. 71.
    G. Molli, R. Tribuzio, and D. Marquer, “Deformation and Metamorphism at the Eastern Border of the Tenda Massif (NE Corsica): a Record of Subduction and Exhumation of Continental Crust,” J. Struct. Geol. 29, 1748–1766 (2006).CrossRefGoogle Scholar
  72. 72.
    Yu. A. Morozov, An Inverse Kinematic Effect of Thrusting and Its Structural and Tectonic Implications,” Trans. (Dokl.) Rus. Acad. Sci. 384(4), 382–385 (2002).Google Scholar
  73. 73.
    J. Mosar, “Present-Day and Future Tectonic Underplating in the Western Swiss Alps: Reconciliation of Basement Wrench-Faulting and décollement Folding of the Jura and Molasse Basin in the Alpine Foreland,” Earth Planet. Sci. Lett. 173, 143–145 (1999).CrossRefGoogle Scholar
  74. 74.
    M. Naylor, H. D. Sinclair, S. Willett, and P. A. Cowie, “A Discrete Element Model for Orogenesis and Accretionary Wedge Growth,” J. Geophys. Res. 110, B12403 (2005), doi: 10.1029/2003JB002940.CrossRefGoogle Scholar
  75. 75.
    A. Pérez-Estaün, J. R. Martinez-Catalan, and F. Bastida, “Crustal Thickening and Deformation Sequence in the Footwall to the Suture of the Variscan Belt of Northwest Spain,” Tectonophysics 191, 243–253 (1991).CrossRefGoogle Scholar
  76. 76.
    K. S. Persson and D. Sokoutis, “Analogue Models of Orogenic Wedges Controlled by Erosion,” Tectonophysics 356, 323–336 (2002).CrossRefGoogle Scholar
  77. 77.
    O. A. Pfiffner, S. Ellis, and C. Beaumont, “Collision Tectonics in the Swiss Alps: Insight from Geodynamic Modeling,” Tectonics 19(6), 1065–1094 (2000).CrossRefGoogle Scholar
  78. 78.
    J. P. Platt, “Dynamics of Orogenic Wedges and the Uplift of High-Pressure Metamorphic Rocks,” Geol. Soc. Am. Bull. 97, 1037–1053 (1986).CrossRefGoogle Scholar
  79. 79.
    D. M. Robinson and O. N. Pearson, “Thrust in Nepal: Implications for Channel Flow Exhumation of Greater Himalayan Rock Along the Main Central,” Geol. Soc. Spec. Publ. 268, 255–267 (2006).CrossRefGoogle Scholar
  80. 80.
    F. Schlunegger and M. Hinderer, “Crustal Uplift in the Alps: Why the Drainage Pattern Matters,” Terra Nova 13, 425–432 (2001).CrossRefGoogle Scholar
  81. 81.
    C. Selzer, S. J. H. Buiter, and O. A. Pfiffner, “Numerical Modeling of Frontal and Basal Accretion at Collisional Margins,” Tectonics 27, TC3001 (2008), doi: 10.1029/2007TC002169.CrossRefGoogle Scholar
  82. 82.
    J. B. H. Shyu, K. Sieh, Y.-G. Chen, and L.H. Chung, “Geomorphic Analysis of the Central Range Fault, the Second Major Active Structure of the Longitudinal Valley Suture, Eastern Taiwan,” Geol. Soc. Am. Bull. 118(11/12), 1447–1462 (2006), doi: 10.1130/B25905.1.Google Scholar
  83. 83.
    M. Simoés and J. P. Avouac, “Investigating the Kinematics of Mountain Building in Taiwan from the Spatiotemporal Evolution of the Foreland Basin and Western Foothills,” J. Geophys. Res. 111(B10) (2006), doi: 10.1029/2005JB004209.Google Scholar
  84. 84.
    M. Simoés, J. P. Avouac, O. Beyssac, B. Goffe, K. Farley, and Y. G. Chen, “Mountain Building in Taiwan: A Thermokinematic Model,” J. Geophys. Res. 112, B11405 (2007), doi: 10.1029/20066JB004824.CrossRefGoogle Scholar
  85. 85.
    G. D. H. Simpson, “How and to what Extent does the Emergence of Orogens above Sea Level Influence Their Tectonic Development?,” Terra Nova 18, 447–451 (2006a), doi: 10.1111/j.1365-3121.2006.00711.CrossRefGoogle Scholar
  86. 86.
    G. D. H. Simpson, “Influence of Erosion and Deposition on Deformation in Fold Belts,” Geol. Soc. Am. Spec. Pap. 398, 267–281 (2006b).Google Scholar
  87. 87.
    A. Sommaruga, “décollement Tectonics in the Jura Foreland Fold-and-Thrust Belt,” Mar. Petrol. Geol. 16(2), 111–134 (1999).CrossRefGoogle Scholar
  88. 88.
    J.-C. Soula, P. Debat, S. Brusset, G. Bessiére, F. Christophoul, and J. Déramond, “Thrust-Related, Diapiric, and Extensional Doming in a Frontal Orogenic Wedge: Example of the Montagne Noire, Southern French Hercynian Belt,” J. Struct. Geol. 23(11), 1677–1699 (2001).CrossRefGoogle Scholar
  89. 89.
    G. S. Stockmal, “Modeling of Large Scale Accretionary Wedge Deformation,” J. Geophys. Res. 88, 8271–8287 (1983).CrossRefGoogle Scholar
  90. 90.
    G. S. Stockmal, C. Beaumont, M. Nguyen, and B. Lee, “Mechanics of Thin-Skinned Fold-and-Thrust Belts: Insights from Numerical Models,” Geol. Soc. Am. Spec. Pap. 433, 63–98 (2007).Google Scholar
  91. 91.
    M. A. Summerfield and N. J. Hulton, “Natural Controls of Fluvial Denudation Rates in Major World Drainage Basins,” J. Geophys. Res. 99(B7), 13871–13884 (1994).CrossRefGoogle Scholar
  92. 92.
    J. Suppe, “Mechanics of Mountain Building and Metamorphism in Taiwan,” Memoir Geol. Soc. China 4, 67–89 (1981).Google Scholar
  93. 93.
    G. Toussaint, E. Burov, and J.-P. Avouac, “Tectonic Evolution of a Continental Collision Zone: A Thermomechanical Numerical Model,” Tectonics 23, TC6003 (2004), doi: 10.1029/2003TC001604.CrossRefGoogle Scholar
  94. 94.
    J. Van den Driessche and J. P. Brun, “Tectonic Evolution of the Montagne Noire (French Massif Central): a Model of Extensional Gneiss Dome,” Geodinamica Acta 5, 85–99 (1992).Google Scholar
  95. 95.
    S. D. Willett, “Orogeny and Orography: The Effects of Erosion on the Structure of Mountain Belts,” J. Geophys. Res. 104(B12), 28957–28982 (1999).CrossRefGoogle Scholar
  96. 96.
    S. D. Willett and M. T. Brandon, “On Steady States in Mountain Belts,” Geology 30, 175–178 (2002).CrossRefGoogle Scholar
  97. 97.
    S. D. Willett, C. Beaumont, and P. Fullsack, “Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens,” Geology 21(4), 371–374 (1993).CrossRefGoogle Scholar
  98. 98.
    W. Zhao, K. D. Nelson, and project INDEPTH team, “Deep Seismic-Reflection Evidence for Continental Underthrusting Beneath Southern Tibet,” Nature 366, 557–559 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Lab. Géosciences MontpellierCNRS UMR 5243Montpellier cedex 5France
  2. 2.International Laboratory, (LIA) “ADEPT”CNRS-NSCMontpellier cedex 5France
  3. 3.Institut National de la Recherche ScientifiqueCentre Eau, Terre et Environnement (INRS-ETE)Quebec CityCanada

Personalised recommendations